## Citation:

L. Holew, W.S. Charlton, E. Miller, and S. Pozzi, “Using Neutron Angular Anisotropy Information to Dynamically Determine the Ratio of the (α,n) Rate to Spontaneous Fission Rate for Coincidence Counting Applications”, *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 701 (2013).

## Abstract:

Typically, when neutron coincidence or multiplicity counting is performed, there are three unknowns: the sample mass, the leakage self-multiplication, and the ratio of the (α,n) rate of the source to the spontaneous fission rate. For a given counting time, the strength of the source or the detector efficiency must be sufficiently high for the singles, doubles, and triples count rates to represent statistically meaningful quantities. Often, the strength of the source and the allotted counting time are such that only the singles and doubles count rates are statistically meaningful. In this latter case, the ratio of (α,n) to the spontaneous fission must be estimated through some other means. With a simulated (α,n) rate, the two equations related to the singles and doubles count rates can be used to determine the sample mass. In order to determine the ratio of (α,n) to spontaneous fission rate of the source, the isotopic composition of the sample as well as the light element impurities inside the source must be known. Ideally, there would be a way to dynamically determine the (α,n) rate of the source from count rate information. In this paper, it is shown that the (α,n) rate of the source can be determined by using information about the ratio of the number of coincident neutrons at 180° to the number at 90°. By using this information, the three aforementioned unknowns can be dynamically determined through the sole use of singles and doubles count rates.