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ABSTRACT

The Standard Template Adaptive Parallel Library (STAPL)
is a high-productivity parallel programming framework that
extends C++ and STL with unified support for shared and
distributed memory parallelism. STAPL provides distributed
data structures (pContainers) and parallel algorithms (pAl-
gorithms) and a generic methodology for extending them to
provide customized functionality. The STAPL runtime sys-
tem provides the abstraction for communication and pro-
gram execution. In this paper, we describe the major com-
ponents of STAPL and present performance results for both
algorithms and data structures showing scalability up to tens
of thousands of processors.
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1. INTRODUCTION

The increasing availability of multiprocessor and multi-
core architectures and the need to solve larger and more
complex problems makes parallel programming crucial for
application development. A major challenge of parallel pro-
gramming is productivity, which is mainly affected by pro-
grammability and portability of performance. Absolute per-
formance is crucial since the main goal of parallel applica-
tions is to outperform sequential ones, thus justifying the
investment in a parallel architecture. Parallel algorithms are
sensitive to system architecture (latency, topology, etc.) and
to application data (data type, distribution, density, etc.).
Consequently, it is essential for parallel software to provide
good performance when moving from one platform to an-
other. Programmability refers to the problem of simplifying
parallel program development by hiding the details of con-
currency orchestration and by providing linguistic constructs
and tools that can naturally express parallel algorithms.

To reconcile these two conflicting requirements, we are de-
veloping the Standard Template Adaptive Parallel Library
(STAPL) [2, 30, 24, 26, 1]. The STAPL framework for parallel
C++ code development is intended to play a similar role in
facilitating parallel program development as the ISO C++
standard library [21] plays for sequential C++ program-
ming. STAPL supports portable performance by providing
the tools and mechanisms that enable STAPL programs to
continually adapt to the system and the data at all levels —
from selecting the most appropriate algorithmic implemen-
tation to tuning communication granularity and frequency.
Although more experienced users may later choose to refine
performance manually using mechanisms provided by STAPL,
a major design goal of STAPL is to provide good performance
even for the novice parallel programmer.

STAPL provides three levels of abstraction appropriate to
an application developer (level 1), a library developer (level
2), and a run-time system developer (level 3). At the highest
abstraction level (application developer), STAPL offers an
sTL-like interface to a generic parallel machine. Parallel pro-
grams can be composed by non-expert parallel programmers
using building blocks from the core STAPL library. Users
don’t have to (but can) be aware of the distributed nature of
the machine. At the intermediate level, STAPL exposes suf-
ficient information to allow a library developer to implement
new STAPL-like algorithms and containers, i.e., to expand
the STAPL base or build a domain specific library. This



is the lowest level at which the “usual” user of STAPL op-
erates. At the lowest level, the RTS developer has access
to the implementation of the communication and synchro-
nization library, the interaction between OS, STAPL thread
scheduling, memory management and machine specific fea-
tures such as topology and memory subsystem organization.

There are several applications being developed using
STAPL, such as seismic ray-tracing for geophysics applica-
tions, particle transport for radiation simulation, and mo-
tion planning for robots and complex molecules such as pro-
teins. In this paper, we describe some of the main STAPL con-
cepts. In Section 2 we provide a more detailed overview of
the STAPL components followed by related work in Section 3.
Sections 4 and 5 provide descriptions of pContainers and
pAlgorithms, respectively. Section 6 describes the STAPL
runtime system. Finally, Section 7 shows some preliminary
results about scalability and execution times of STAPL pCon-
tainers and pAlgorithms.

2. STAPL OVERVIEW

STAPL is a framework for parallel code development in
C++. Its core is a library of C++4 components with in-
terfaces similar to the (sequential) ISO C++ standard li-
brary [21]. STAPL offers the parallel system programmer a
shared object view of the data space. The objects are dis-
tributed across the memory hierarchy which can be shared
and/or distributed address spaces. Internal STAPL mech-
anisms assure an automatic translation from one space to
another, presenting a unified address space to the less expe-
rienced user. For more experienced users, the local/remote
distinction of accesses can be exposed and performance en-
hanced for a specific application or application domain. To
exploit large hierarchical systems, such as BlueGene, Cray
Jaguar, STAPL allows for (recursive) nested parallelism (as
in NESL [4]).

The STAPL infrastructure consists of platform independent
and platform dependent components that are revealed to the
programmer at an appropriate level of detail through a hi-
erarchy of abstract interfaces (see Figure 1). The platform
independent components include the core parallel library,
and an abstract interface to the communication library and
run-time system. The core STAPL library consists of pAlgo-
rithms (parallel algorithms) and pContainers (distributed
data structures). Important aspects of all STAPL components
are ertendability and composability. For example, users can
extend and specialize STAPL pContainers(using inheritance)
and/or compose them. For example, STAPL users can em-
ploy pContainers of pContainers in pAlgorithms which
may themselves call pAlgorithms.

pContainers, the distributed counterpart of STL contain-
ers, are thread-safe, concurrent objects, i.e., shared objects
that provide parallel methods that can be invoked concur-
rently. They are composable and extensible by users via in-
heritance. Currently, STAPL provides counterparts of all STL
containers (e.g., pArray, pVector, pList, pMap, etc.), and
pContainers that do not have STL equivalents: parallel ma-
trix (pMatrix) and parallel graph (pGraph). pContainers
provide two kinds of methods to access their data: meth-
ods which are semantically equivalent to their sequential
counterpart and methods which are specific to parallel com-
putations. For example, STAPL provides an insert_async
method that can return control to the caller before its ex-
ecution completes. While a pContainer’s data may be dis-
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Figure 1: STAPL Overview

tributed, pContainers offer the programmer a shared object
view, i.e., they are shared data structures with a global ad-
dress space. This is provided by an internal object transla-
tion method which can transparently locate both local and
remote elements. The physical distribution of a pContainer
data can be assigned automatically by STAPL or can be user-
specified.

A pAlgorithm is the parallel equivalent of an STL algo-
rithm. STAPL currently includes a large collection of par-
allel algorithms, including parallel counterparts of STL al-
gorithms, pAlgorithms for important parallel algorithmic
techniques (e.g., prefix sums, the Euler tour technique), and
some for use with STAPL extensions to STL (i.e., graph algo-
rithms for pGraph). Analogous to STL algorithms that use
iterators, STAPL pAlgorithms are written in terms of views.
Briefly, views allow the same pContainer to present multi-
ple interfaces to its users, e.g., enabling the same pMatrix
to be ‘viewed’ (or used) as a row-major or column-major
matrix or even as linearized vector.

pAlgorithms are represented by pRanges. Briefly, a
pRange is a graph whose vertices are tasks and the edges the
dependencies, if any, between them. A task includes both
work (represented by what we call workfunctions) and data
(from pContainers, generically accessed through views).
The executor, itself a distributed shared object, is respon-
sible for the parallel execution of computations represented
by pRanges; as tasks complete, the executor updates de-
pendencies, identifies tasks that are ready for execution, and
works with the scheduler to determine which tasks to exe-
cute. Nested parallelism can be created by invoking a pAl-
gorithm from within a task.

The platform dependent STAPL components are mainly
contained in the STAPL runtime system (RTS), which pro-
vides the API to the OS and several important functions.
The RTS includes the ARMI (Adaptive Remote Method In-
vocation (RMI)) communication library that abstracts inter-
processor communication for the higher level STAPL compo-
nents. The RTS also contains the executor and sched-
uler modules that are responsible for allocating resources
for the computation and for executing it, and the perfor-
mance monitor. ARMI abstracts communication of data
and work across the distributed memory machine by provid-
ing a common remote method invocation (RMI) interface to
all other STAPL components [26]. There is also support in
ARMI for collective operations common in parallel program-



Features/ | Paradigm® | Architecture | Nested | Adaptive | Generic | Data Scheduling Overlap
Project Distribution comm/comp
STAPL S/MPMD | Shared/Dist | Yes Yes Yes Auto/User | Customizable Yes
PSTL SPMD Shared/Dist | No No Yes Auto Tulip RTS No
Charm++ | MPMD Shared/Dist | No No Yes User prioritized execu- | Yes
tion
CILK S/MPMD | Shared/Dist | Yes No No User work stealing No
NESL S/MPMD | Shared/Dist | Yes No Yes User work and depth | No
model
POOMA SPMD Shared/Dist | No No Yes User pthread schedul- | No
ing
SPLIT-C SPMD Shared/Dist | Yes No No User user Yes
X10 S/MPMD | Shared/Dist | No No Yes Auto - Yes
Chapel S/MPMD | Shared/Dist | Yes No Yes Auto - Yes
Titanium | S/MPMD | Shared/Dist | No No No Auto - Yes
Intel TBB | SPMD Shared Yes Yes Yes Auto work stealing No

L SPMD - Single Program Multiple Data, MPMD - Multiple Program Multiple Data

Table 1: Comparison with related projects

ming, such as broadcasts and reductions. Its implementa-
tion is machine dependent and it can generate synchronous
or asynchronous messages (e.g., MPI messages) or synchro-
nizations, e.g., OpenMP synchronizations. The executor
and scheduler provide support for an assortment of com-
mon scheduling policies and load balancing strategies, and
also provide mechanisms through which users can add their
own versions of these services. The STAPL run-time system
will support nested parallelism if the underlying architecture
allows nested parallelism via a hierarchical native runtime
system. Otherwise, the runtime system will serialize the
nested parallelism.

3. RELATED WORK

There is a relatively large body of work that has simi-
lar goals to stapL. PSTL [17], TBB [15], POOMA [25],
and STAPL borrow from the STL philosophy, i.e., they pro-
vide concepts such as containers, iterators, and algorithms.
The Parallel Standard Template Library (PSTL) had sim-
ilar goals to STAPL; it uses parallel iterators as a parallel
equivalent to STL iterators and provides some parallel al-
gorithms and containers. However, PSTL was focused on
STL compatibility, while STAPL extends STL by introducing
additional parallel data structures and management of data
dependencies to specify generic parallel algorithms. Intel’s
Threading Building Blocks (TBB) [15] implements some of
the STAPL concepts but targets only shared memory sys-
tems (multi-cores in particular). STAPL targets both shared
and distributed systems with heavy emphasis on developing
an extensible infrastructure. There are also other impor-
tant differences in the way computational patterns are spec-
ified. Instead of taking the exclusive divide-and-conquer of
data approach, STAPL also also allows (and perhaps favors)
a compose-and-conquer tasks strategy.

Projects like NESL [3], CILK [12], Split-C [9], Chapel [7],
and X10 [8] provide the ability to exploit nested parallelism.
In addition to nested parallelism, STAPL is intended to au-
tomatically generate recursive parallelization without user
intervention. Several languages/libraries abstract shared
memory machines, hiding the details of the data distribu-
tion from the user. Others provide the user with a parti-

tioned global address space (PGAS), including Split-C [9],
X10 [8], Chapel [7], and Titanium [32]. In PGAS languages,
memory accesses have different costs for local and remote
data. STAPL provides a shared memory abstraction for the
naive user while exposing a PGAS architecture to the more
advanced user, decoupling the application from library de-
velopment. STAPL also focuses on interoperability with other
languages and libraries [6], to allow the use of well estab-
lished and highly optimized routines.

Adaptivity refers to an application’s ability to improve
resource usage based on architectural parameters and dy-
namic information, such as input characteristics, computa-
tional load, etc. STAPL is designed to emphasize adaptiv-
ity, providing frameworks for algorithm selection, data dis-
tribution selection, and to refine or coarsen the degree of
parallelism during execution of a program. TBB also pro-
vides some degree of adaptivity by allowing the recursive
refinement of data ranges according to specified policies and
dynamic conditions. STAPL addresses irregular applications
both by providing irregular data structures (such as trees,
lists, and graphs), and by emphasizing the development of
algorithms by specifying classes of data dependencies. X10
[8] and Charm-++ [19] also provide support for irregular ap-
plications through their concepts of activity and chare ob-
jects, respectively. In Table 1 we report a summary of the
comparison with other projects in terms of programming
and execution models, and supported architectures.

There has been significant research in the area of dis-
tributed and concurrent data structure development. Most
of the related work is focused either on how to implement
concurrent objects using different locking primitives or how
to implement concurrent lock-free data structures [14]. Val-
ois [31] was one of the first to present a non-blocking singly-
linked list data structure by using Compare&Swap (CAS)
synchronization primitives rather than locks. The basic
idea is to use auxiliary nodes between each ordinary node
to solve the concurrency issues. Subsequent work [13; 20,
10, 23] proposes different concurrent list implementations
for shared memory architectures, emphasizing the benefits
on non-blocking implementations in comparison with lock
based solutions.

In the area of runtime systems, there are other projects



that share some of the characteristics of the sTAPL RTS.
The runtime system of TBB [15] provides the ability to ex-
press algorithms using tasks and uses work-stealing algo-
rithms and task affinity to provide efficient mapping of tasks
to hardware threads. However it is only suited for shared
memory systems. TBB is planned to be used as a multi-
threaded back-end for the STAPL RTS. Nexus [11] has the
Remote Service Requests (RSR) that are non-blocking Re-
mote Procedure Calls (RPC). An RSR can spawn a thread
at the destination to execute the procedure. On the other
hand it does not provide blocking communication primitives
and is restricted to only POSIX threads. ARMCI [22] pro-
vides one-sided communication primitives that focus on op-
timizing strided data communication. ARMCI also employs
buffering to minimize sent messages and maximize band-
width. GASnet [5] provides a global shared memory abstrac-
tion to the user and allows memory to copied or be copied
from every process to any other process. Both ARMCI and
GASnet do not offer any kind of task support. Converse [18]
provides a means for making calls to remote objects via re-
mote pointers and supports user-level threads and provides
load-balancing. Converse requires significant effort to be
ported onto new systems, since it does not take advantage
of native communication or threading libraries, which is a
key design choice of the STAPL RTS to speed up the process
of porting the library to different platforms.

4. THE PARALLEL CONTAINER FRAME-
WORK

pContainers are collections of elements that are dis-
tributed across a parallel machine and accessed concur-
rently. The STAPL Parallel Container Framework (PCF),
consists of a set of formally defined concepts and a method-
ology for facilitating the process of developing generic par-
allel containers which are thread safe and composable. At
the highest level, the framework allows users to assemble a
pContainer from a collection of already existing containers,
called base containers, or bContainers, and some additional
information (called data-distribution information) to handle
data distribution and locality information. This information
is managed by the data distribution manager.

The stAPL PCF distinguishes itself from existing work
through a number of features. We provide an integrated
approach for all pContainers, encouraging software reuse
and improving user productivity. This allows us to de-
velop a large number of data structures in a uniform fashion,
e.g., pArray, pList, pVector, pMatrix, pGraph, pMap, pSet,
pHashMap, and others [28, 27, 6, 29]. STAPL pContainers can
be arbitrarily composed, by allowing the elements of a pCon-
tainer to be pContainers themselves. This enables users to
express more complicated data structures and is one natural
way to specify nested parallelism. By design, at the inter-
face level, data elements of pContainers are not replicated,
so the user does not need to deal with data replication and
caching.

The pContainers provide synchronous methods to ac-
cess their data elements, such as assignment x = con-
tainer[i]. Their semantics is similar to their sequen-
tial counterpart. They also provide asynchronous meth-
ods, by leveraging the corresponding RMI primitives de-
scribed in Section 6. For instance, a synchronous method
to insert an element in a container looks like it = con-

tainer.insert_synch(value), while the asynchronous ver-
sion looks like container.insert_async(value). Because
the asynchronous method does not return a value, its caller
can proceed to the next instruction without delay.

Like all other STAPL components, pContainers allow full
customization. The PCF is open and allows users to de-
velop new containers by deriving from the provided base
implementations. Moreover, existing pContainers support
data redistribution at runtime, and data distributions can
be customized for specific applications. Thread safety and
data consistency policies can also be tailored to algorithm
and application specific characteristics.

The concepts defined by the PCF for managing the data
and the distribution information are the Global Identifier,
Domain, Data Distribution, Partition, Partition Mapper,
Base Containers, Location Manager and View. We provide
an overview of these concepts next.

Base Container: The data stored in a pContainer is or-
ganized as a collection of containers that we refer to as Base
Containers or bContainers. The bContainers are obtained
by extending existing containers with an appropriate inter-
face to allow easy and uniform interaction with the PCF.
For example, the bContainers of the current STAPL pCon-
tainers that are counterparts of STL containers are based
on the STL containers themselves. However, this is a flexible
decision and other implementations from other libraries can
be used.

Global Identifier (GID): A STAPL pContainer uniquely
identifies its elements by associating them with a GID. This is
an important requirement that allows us to provide a shared
object view. Having access to the GID of an element, the
pContainer can identify its location on a distributed mem-
ory machine. For example, for a parallel array (pArray)
the GID is the index of the element, for a simple associative
pContainer the GID is the key while for a multi-associative
pContainer the GID is a pair (key, m), where m is an integer
used to manage multiplicity.

Domain: The pContainer domain is the universe of GIDs
that identifies its elements. The domain for a pArray is a
finite set of indices while for an associative pContainer is
a set of keys. Domains can be ordered sets, thus allowing
their elements to be uniquely traversed.

Data Distribution: The Data Distribution is responsi-
ble for determining the location where an element associated
with a GID is located. A location is a component of a parallel
machine that has a contiguous memory address space and
has associated execution capabilities (e.g., threads). A lo-
cation may be identified with a process address space. The
data distribution manager uses (i) a partition to determine
a decomposition of a domain into sub-domains and to spec-
ify for every GID in the domain to which sub-domain it has
been allocated, and (ii) a partition-mapper to determine
to which location each sub-domain has been allocated. This
class provides the routing of the methods to the proper lo-
cation and guarantees the thread safety of the operations
performed by the user. The user has the option to provide
additional partition and partition-mapper classes if those
provided by STAPL do not meet their needs.

Location Manager: A location may store a sub-set of
the bContainers of a pContainer. The pContainer will em-
ploy, within each location, a Location Manager to maintain
the collection of bContainers. The location manager may
use different optimizations for the storage of bContainers
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Figure 2: pContainer modules interaction to find the
element reference corresponding to a given GID.

depending on the properties of particular data structures.
For example, different memory allocators may be used to
allocate the space required by the bContainers.

pContainer Container Framework: To automate the
process of developing pContainers, the PCF includes an
(almost) hierarchically structured collection of pContainer
base classes. For each component of this collection the
framework provides a default implementation for GIDs, do-
mains, partitions, partition mappers and location managers
that developers can use as is or specialize to further improve
the performance of their data structures.

In Figure 2 we depict the address resolution that a
pContainer performs for methods accessing the element cor-
responding to a given GID. The GID is first mapped using
the partition to a bContainer identified by its unique iden-
tifier (BCID). If the BCID is unknown in the location where
the method is invoked, then a location identifier is returned
(LOC) which indicates a location that may know about
the requested BCID. The computation is then transferred
to the LOC and the method re-evaluated. Otherwise, the
bContainer identifier is mapped into a particular location
using the partition mapper which returns a location iden-
tifier (LID) indicating where to execute the methods. At
this point, the pContainer invokes the method on the loca-
tion owning the bContainer, where a location manager is
used to map the BCID to the particular bContainer. The
bContainer is then used to access the element corresponding
to the given GID.

5. PARALLEL ALGORITHMSIN STAPL

As mentioned previously, algorithms in STAPL are ex-
pressed as task graphs, where vertices represent tasks and
edges represent the dependencies among them. A task is
a pair consisting of data, represented by a view, and work,
also called a workfunction. To help the application developer
in specifying algorithms, the library provides computational
patterns. STAPL provides generic algorithms to the applica-
tion developer and the corresponding patterns that extend

l:struct strmatch {

2: typedef access_list<R> view_access_types;

3: string pat;

4: strmatch(string _pat) : pat(_pat) {}

template<typename View>

bool operator() (View x) const {
return stapl::p_equal(pat,x);

}

© 0N »;

3

Figure 3: Implementation of the user workfunction
for the string matching algorithm.

the C++ sTL library, and other useful algorithms, such as
parallel prefix, and common graph algorithms.

Common patterns provided by STAPL are map, map_reduce
and partial_sum. To use the patterns the user indicates the
input data and the operators to be applied during the com-
putation. The data, represented as (and accessed though) a
view, can be partitioned as desired by the user. For instance,
assume the user wants to count how many times a given
string appears in a text. This instance of the string match-
ing problem can be implemented as a map_reduce, where
the map operation compares each substring of the text with
the string to match, while the reduction counts how many
matches have been encountered. To do this, the user par-
titions the input text into the substrings of the size of the
pattern to match, and then executes a map_reduce pattern
with the strmatch as the map operator and plus as the re-
duce operator. One way of implementing this algorithm is
as follows:

int mts = map_reduce(
overlap_view(text_view, 1, 0, pattern.size()-1),
strmatch(pattern),
std: :plus<char>);

where text_view contains the text to be searched, while
pattern contains the string to match, and mts will store the
result of the computation. overlap_view(V, s, 1, r) in-
dicates that the view V has to be partitioned into pieces
where the elements are accessed with stride s and each
element comprises 1 elements on the left and r elements
on the right. In this context, this means that we are se-
lecting all elements with stride 1 and O elements on the
left and pattern.size()-1 on the right. Since only full
portions are considered, we are partitioning the text into
all its text.size()-pattern.size()+1 substrings of length
pattern.size().

The map operation strmatch can be implemented using
a function-object as in Figure 3. The function operator of
strmatch invokes the STAPL algorithm p_equal that can ex-
ecute in parallel (nested parallelism).

The computational pattern is always specified exposing
the maximum amount of parallelism. It is left to the li-
brary to translate the fine grain parallel algorithm into an
appropriate task graph that exploits the characteristics of
the underlying platform.

It is worth noting that the function operator of the class is
templated (line 5 of Figure 3). This detail exposes an impor-
tant feature of STAPL. In the attempt to optimize the data
access performed by a task, the type of view passed to the



user functions (function-objects) can be substituted by the
library itself. For instance, the access through pContainer
methods that provide a shared memory view of the data can
be substituted with direct memory access through pointers
if the proper conditions hold. In the same way, the user
function describes if its arguments are read-only, write-only,
or read-write. To do this, the user can specify, as in line 2
of Figure 3, that the input of the function operator is only
read by the function operator. This is used by the STAPL
task placement policy to decide in which location and what
representation of the data is the best fit for a given task. If
the user does not specify the access type, STAPL assumes,
conservatively, that the access is read-write.

6. RUNTIME SYSTEM

The STAPL runtime system (RTS) is the only platform
specific component of the library that needs to be ported
to each target. It provides a communication and synchro-
nization library (ARMI), an ezecutor, and a scheduler of the
tasks of the pRanges. The RTS is not intended to be used
directly by the STAPL user or library developer.

The RTS provides locations as an abstraction of process-
ing elements in a system. A location is a component of a
parallel machine that has a contiguous address space and
has associated execution capabilities (e.g., threads). Differ-
ent locations can communicate exclusively through ARMI,
the Adaptive Remote Method Invocation library, which rep-
resents the communication layer of the RTS. Special types
of objects, named p_objects, implement the basic concept
of a shared object. The representative of a p_object in
each location has to register with the RTS to enable Remote
Method Invocations (RMIs) between the representative ob-
jects. This is the reason why all the parallel objects in STAPL
inherit from the base p_object class. RMIs enable the ex-
change of data between locations and the transfer of the
computation from one location to another.

RMIs are divided into two classes: asynchronous RMIs
and synchronous RMIs. The former execute a method on
a registered object in a remote location without waiting for
its termination, while the latter block waiting for the termi-
nation of the invoked method. A mechanism is provided to
asynchronously execute methods that return values to the
caller. As parallel machine sizes reach processor counts into
the millions, it becomes essential for algorithms to be im-
plemented using only asynchronous RMIs. In STAPL, these
operations implement computation migration, which allows
scalability for very large numbers of processors. We also
provide sync_rmis for completeness, but their use is discour-
aged. The RTS guarantees that requests from a location to
another location are executed in order of invocation at the
source location.

The RTS provides RMI versions of common aggregate op-
erations. These primitives come in two flavors: one-sided,
in which a single requesting location invokes the execution
of a method in all others, eventually receiving a result back,
and collective, in which all locations participate in the exe-
cution of the operation. All the RMI operations, point-to-
point, single-sided, and collective, are defined within com-
munication groups, thus enabling nested parallelism. Col-
lective operations have the same semantics as the traditional
MPI collective operations. The provided operations include
broadcast, reduce, and fence. The fence operation, called
rmi_fence, when completed, guarantees that no pending

RMIs are still executing in the group where it is called.

The RTS provides some optimizations to use bandwidth
and reduce overhead. The major techniques used are aggre-
gation, that packs multiple requests to a given location into a
single message, and combining, that supports the repetitive
execution of the same method in a given location without in-
curring a large overhead for object construction and function
calls. Memory management and the number of messages ag-
gregated are managed by the RTS adaptively according to
the application needs.

Another RTS component, the executor, has the role of
executing task graphs corresponding to pAlgorithms. The
executor identifies sets of independent tasks to be executed,
and schedules them according to the customizable scheduler
module. From its perspective, the executor treats incoming
RMI requests and algorithmic tasks as RT'S tasks. Tasks can
be assigned to execution threads and they are considered
independent.

7. PERFORMANCE EVALUATION

In this section, we evaluate the scalability of algorithms
and data structures in STAPL. We conducted our experimen-
tal study on two architectures: a 38,288 processor Cray XT4
with quad core Opteron processors available at NERSC (re-
ferred to as CRAY) and a 128 processor IBM cluster with p575
SMP nodes available at Texas A&M University (referred to
as P5-CLUSTER). In all experiments, a location contains a
single processor, and the terms can be used interchangeably.

In Figure 4, we show the execution times for the
pAlgorithms p_generate, p_for_each and p_accumulate on
pArray, pList, pGraph, and pMatrix. p_generate is a mu-
tating algorithm that overwrites each of the elements passed
to it with the result of a nullary function, which in our ex-
periments generates random values. p_for_each is a mu-
tating algorithm that applies a function to each of the el-
ements passed to it and overwrites each element with the
corresponding result; the order in which the function is ap-
plied is not specified. p_accumulate computes the sum of
all the elements of the container passed to it; it implements
a basic parallel reduction operation on the elements passed
to it. The figure shows a weak scaling experiment for all
three algorithms on (a) pArray, (b) pList, (c¢) pMatrix, and
(d) pGraph. The experiment is performed with 20M ele-
ments per processor for pArray, pList, and pMatrix, while
for pGraph we study both static and dynamic graph repre-
sentations in which each processor stores a stencil of a 2D
torus of size 1500 x 1500. This analysis highlights the per-
formance differences of the various data structures.

From the plot in Figure 4(a) we observe that for the
pArray the performance degradation is 5% when scal-
ing from 128 to 16,385 processors for p_generate and
p_for_each. For p_accumulate, which performs a global re-
duction to provide the result, the performance degradation
is about 40%. This is due to the limited amount of compu-
tation performed to access and add local elements relative
to the communication cost of the reduction. The pMatrix
results included in Figure 4(c) show the same behavior as
the pArray for all three algorithms as we scale from 128
to 8192 processors. For pList, we show the results in Fig-
ure 4(b). We observe the same overall good scalability as
we increase the number of processors from 128 to 16,384
but the overall execution times are slower for all three algo-
rithms when compared to pArray and pMatrix. This is due
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to the higher access time in a pList relative to the static
pContainers, behavior that is inherited from the STL con-
tainers used as bContainers. In Figure 4(d) we show the
scalability for p_for_each and p_accumulate when the al-
gorithms use views defined over a linearization of the vertices
in a pGraph. The weak scaling experiment is for a 1500x 1500
torus stencil per processor and for two different graph par-
titions, a static graph partition that optimizes the storage
(e.g., std::valarray) but doesn’t allow adding or deleting
vertices after creation, and a dynamic graph partition that
employs a slower access time storage (e.g., std::set) that
allows for addition and deletion of vertices. The static par-
tition outperforms the dynamic partition by almost a factor
of three due to its more efficient traversal of elements in the
bContainer.

Figure 7 shows the execution times of two pGraph
pAlgorithms. One is find_sinks, which scans through the
vertices and identifies those with no outgoing edges. The
other is find_sources which works in two phases: the first
scans all the vertices and marks the target of their outgoing
edges, and the second scans the vertices and outputs the
ones that have not been marked in the first phase. We run
the two algorithms on a 2D torus of size 1500 x 1500 per
processor. Figure 7(a) shows the execution times on CRAY
up to 24,000 processors and Figure 7(b) shows the execution
times on P5-CLUSTER when scaling from 1 to 128 processors.

The two algorithms considered scale well as most of the com-
putation is local with minimal communication for boundary
(only 0.03% remote edges).

We next examine the performance of the methods of
pGraph. This weak scaling experiment is carried out by
building a 2D torus where each processor holds a stencil
of 1500x1500 vertices. In a first phase the vertices of the
graph are added using the add_vertex method, then the
edges are added using the add_edge method. Figure 8(a)
shows the execution time of the two phases on CRAY, and
Figure 8(b) on P5-CLUSTER. The methods used are asyn-
chronous, which return the control to the caller before their
completion, thus allowing for overlapping of communication
and computation. It also provides opportunities for the run-
time system to aggregate the messages for a better use of
the bandwidth. As seen in the plots, this computation scales
well for both architectures considered.

In Figure 6 we examine the performance of the
plList methods insert, insert_async, push_anywhere,
and push_anywhere_async on two systems, CRAY and P5-
CLUSTER. In addition to the asynchronous methods provided
for all pContainers, the pList has some additional meth-
ods to support efficient parallel processing. In particular,
the push_anywhere and the push_anywhere_async methods
are provided as alternatives to the STL push_back operation.
The push_back, which adds an element to the end of the list,
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Figure 6: Execution times for pGraph methods add_vertex and add_edge on (a) CRAY and (b) P5-CLUSTER.

is a serializing operation. In contrast, the push_anywhere
methods offer no guarantees as to where the element will
be added, and hence allow STAPL to select efficient options,
such as local insertions. In Figure 6(a) we provide a weak
scaling experiment on CRAY showing good scalability for
pList methods insert, insert_async, push_anywhere, and
push_anywhere_async up to 8192 processors. Similar results
are observed on P5-CLUSTER as shown in Figure 6(b), where
we register a performance drop when more than 8 proces-
sors per node are used. Our experiment distributes the work
on a node in a round robin manner across all sockets (dual
cores) and then across all cores of the node. When both
cores on each chip is utilized, the effective bandwidth per
core is reduced leading to a significant performance degra-
dation. This effect can be observed in all our P5-CLUSTER
experiments.

Finally, we show an example of use of pContainer compo-
sition. For this comparative performance evaluation we will
compute the minimum element in each row of a matrix using
two data representations: the pMatrix pContainer and the
composed pArray of pArrays. The generic algorithm code
is the same for the two cases, due to the access abstrac-
tion mechanism provided by STAPL views. It calls a parallel
for-all on each row, and within each row, a map-reduce to
compute the minimum value. We measure also the time to

create and initialize the storage. The pMatrix allocates the
entire structure in a single step, while the pArray of pArrays
allocates the outer structure first and then allocates the sin-
gle pArray elements individually. In Figure 9, we show for
CRAY the execution times for allocating and initializing the
two data structures and the times to run the min-of-each-
row algorithm, in a weak scaling experiment. Figure 9(a)
shows the case of a P x 100M element matrix (P is the
number of processors), while Figure 9(b) shows the case of
a 100 - P x 1M element matrix. The aggregated input sizes
are overall the same.

As is expected, the pArray of pArrays initialization time is
higher than that for a pMatrix. The time for executing the
algorithm, however, is the same for the two data structures
and scales well to 8192 processors. While we cannot state
with certainty that our PCF allows for efficient composition
(no additional overhead) for any pair of pContainers, the
presented experiment indicates it is possible.

8. CONCLUSION

In this paper we described STAPL, the Standard Template
Adaptive Parallel Library. The library provides an infras-
tructure for parallel programming in C++ with similar in-
terfaces as the STL, the ISO C++ standard library. The
objective of the library is to allow productive parallel ap-



o
()
2
b3
Q
=
|_
c
e 2+
5
8 push anywhere async —+—
g 1 push anywhere -
insert -4
0 L insertasync - @--
1024 2048 4096 8192
Num Procs
(a)

push anywhere async —+—
push anywhere -

Execution Times(sec)

027 insert -
0 ‘ _insertasync --®--
1 2 4 8 16 32 64 128
Num Procs
(b)

Figure 7: Weak scaling study for pList methods on (a) CRAY using 25M method invocations per processor
and (b) P5-CLUSTER using 5M method invocations per processor.

35 —
alloc and fill pa<pa> —+—
— 3+t alloc and fill pmatrix -
3 min rows pa<pa> -
&L 25 ¢ min rows pmatrix -
)
£ 20—ttt
g 5 S
s 157
3
9} 1r
i
05 &.om B R B8
[ | )
64 128 1024 8192
Num Procs
P x 100M Matrix
(a)

Execution Times(sec)

35 .
alloc and fill pa<pa> —+—
3t alloc and fill pmatrix > |
min rows pa<pa> -
25 r min rows pmatrix & |
2 — } + ; /F/;
P v —
15+t i
1 [ 4
0.5 h % — "
(U : ‘
64 128 1024 8192
Num Procs
100 - P x 1M Matrix

(b)

Figure 8: Comparison of parray<parray<> > (pa<pa>) and pMatrix on computing the minimum value for each
row of a matrix. Weak scaling experiment with (a) P x 100M and (b) 100- P X 1M elements. parray<parray<> >
takes longer to initialize while the algorithm executions are similar.

plication development. By productivity we mean ease of
programming and portability of performance. We described
the major components of the library, with specific attention
to the pContainers and pAlgorithms. We also described
the STAPL runtime system, which provides the communi-
cation library and the execution mechanism of STAPL par-
allel algorithms. Our results show that the performance of
pAlgorithms and pContainers is scalable up to tens of thou-
sand of processors and that the performance is portable to
different architectures.
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