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ABSTRACT

We have developed a new parametric non-linear closure for the 1-D slab-geometry Sn equations with
linear-discontinuous (LD) spatial differencing that is strictly positive and yields the set-to-zero fixup
equations in the limit as the parameter is increased withoutbound. Unlike the standard LD equations
with set-to-zero fixup, these non-linear Sn equations, for any finite value of the parameter, are
differentiable and thus amenable to solution via Newton’s method. Furthermore, unlike any
exponential-based closure method, our new scheme is robustwith respect to negativities in the scattering
source that often arise with highly anisotropic scattering. We present results indicating that for an
appropriate range of parameteric values, our new method is strictly positive, efficient, and yields
solutions that rapidly approach the standard LD solution asthe spatial mesh is refined.
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1.. INTRODUCTION

The purpose of this paper is to describe a new parametric non-linear closure for the 1-D slab-geometry Sn equations
with linear-discontinuous (LD) spatial differencing. Negative fluxes represent a long-standing problem in the
numerical transport community. Various fixup procedures have been defined to deal with negativities. One of the
oldest is to simply set negative angular flux values to zero whenever they are obtained during the source iteration
process. This is called the set-to-zero fixup [1]. This procedure works well in purely absorptive problems, but in
problems with scattering, the source iteration process (particularly when accelerated) can interact with the fixup
process in such a manner that convergence is never obtained.The linear Sn equations become non-linear when a
fixup process is imposed, but the resulting equations are actually non-differentiable and thus not amenable to solution
via Newton’s method.

There are two strictly positive and differentiable Sn methods based upon the solution of the zero’th and first spatial
moment equations: the linear-exponential characteristicmethod [2] and the exponential linear-discontinuous
finite-element method [3]. The characteristic method is very accurate, but expensive in multidimensions, difficult to
apply on non-orthogonal meshes, and is not applicable in curvilinear coordinates. The exponential finite-element
method is simpler and more widely applicable than the characteristic method, but is less accurate than the
characteristic method in certain types of problems. Perhaps most importantly, both of these schemes can fail when
small negativities are present in the scattering source dueto highly anisotropic scattering expansions.[2].

We have developed a new parametric non-linear closure for the 1-D slab-geometry Sn equations that is strictly
positive and yields the set-to-zero fixup equations in the limit as the parameter is increased without bound. Unlike the



Maginot, Morel, and Ragusa

standard LD equations with set-to-zero fixup, these non-linear Sn equations, for any finite value of the parameter, are
differentiable and thus amenable to solution via Newton’s method. Furthermore, unlike any exponential-based
closure method, our new scheme is robust with respect to negativities in the scattering source that often arise with
highly anisotropic scattering. We present results indicating that for an appropriate range of parameteric values, our
new method is strictly positive, reasonably efficient, and yields solutions that rapidly approach the standard LD
solution in the limit as the spatial mesh is refined.

2. THE NEW CLOSURE

The exact zero’th and first-moment equations in slab-geometry for spatial celli can be expressed as follows:

µ
(

ψi+1/2 − ψi,i−1/2

)

+ σt,iψi,ahi = Qi,ahi , (1)

and
3µ

(

ψi+1/2 − 2ψi,a + ψi−1/2

)

+ σt,iψi,xhi = Qi,xhi , (2)

whereψi+1/2 andψi−1/2 are the cell edge fluxes,ψi,a is the flux average,ψi,x is the flux slope,Qi,a is the total
source average, andQi,x is the total source slope. The inflow cell-edge flux is known from boundary conditions, so
these two equations have three unknowns and thus require another to close the system. The standard LD method has
the following closure forµ > 0:

ψi+1/2 = ψi,a + ψi,x . (3)

This closure yields a negative outflow flux solution wheneverψi,x/ψi,a < −1. The LD set-to-zero fixup closure for
µ > 0 can be expressed as follows:

ψi+1/2 = ψi,a + ψi,x , if ψi,a + ψi,x ≥ 0 ,

= 0 , otherwise. (4)

Our new closure can be expressed as follows forµ > 0:

ψi+1/2 = ψi,a + ψi,x , if ψi,x/ψi,a ≥ 0 ,

= ψi,a/
[

1 − ψi,x/ψi,a + (ψi,x/ψi,a)
2

+ . . . (−1)N (ψi,x/ψi,a)
N

]

, otherwise, (5)

whereN is a parameter. There are four important properties of this closure. The first is that this closure yields an
outflow flux of the same sign as the average flux. If the inflow fluxis positive and the total source is positive, this will
ensure a positive outflow flux. The standard LD closure can yield an outflow flux of sign opposite to that of the
average flux. The second property is that the outflow flux is a smooth function ofψi,a andψi,x. The degree of
smoothness depends uponN . More specifically, the closure hasN continuous derivatives at the transition point,
ψi,x/ψi,a = 0. Thus, unlike traditional set-to-zero fixup techniques, this closure yields non-linear moment equations
that can be solved via Newton’s method. The third property isthat in the limit asN → ∞, this closure converges to
the set-to-zero closure defined in Eq. (4). Finally, the fourth property is that given an inflow flux of one sign, and an
average flux of another sign (the sign change presumably due to non-physical negativities in the cross section
expansion) the scheme will yield an outflow flux that carries the sign of the average flux. Exponential-based closures
can yield singular equations under these conditions. The quantityψi+1/2/ψi,a is plotted versusψi,x/ψi,a in Fig. 1 for
the LD closure, the set-to-zero closure, theN = 2 (N2),N = 4 (N4) andN = 10 (N10) closures. The smoothness
of the new closure and its approach to the set-to-zero closure with increasingN is clear. Due to space limitations, we
only give closure relationships forµ > 0, but one can easily construct the equations forµ < 0 by analogy.
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Figure 1. Closure relationsips.

3. COMPUTATIONAL RESULTS

We present results for two problems. The first corresponds toa total slab thickness of12.0 cm, σt = 1.0 cm−1,
σs = 0.0 cm−1, with an isotropic flux incident from the left and GaussS8 quadrature. Several calculations with
various closures were performed for this problem with the number of cells varying as follows:
Ncells = 2, 4, 8, 16, 32, 64. The scalar fluxes for the LD method, the linear exponential discontinuous (ED) method,
theN4 method and theN10 method are plotted in Fig. 2. The linear representation within each cell for the angular
fluxes in each direction (used to compute the scalar fluxes) were obtained for all closures by interpolating the outflow
and average fluxes. The negativity of the LD solution and the positivity of the new closure solutions is evident. The
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Figure 2. Flux solutions for problem 1.

second problem we consider is identical to the first except thatσs = 0.5 cm−1. An analytic solution is available for
this problem [4]. The L2 errors for the cell-averaged scalar fluxes as a function of the number of cells are plotted in
Fig. 3 for the LD method, the ED method, theN4 method and theN10 method. Note that theN4 andN10 solutions
converge to the LD solution as the mesh is refined. As expectedtheN10 solution converges to the LD solution more
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Figure 3. Error versus cell width for various closures.

rapidly than theN4 solution. The ED solution is also the most accurate of all solutions in this case, but this is a
problem-dependent result, as demonstrated by additional calculations not shown here. The Sn equations for all
methods are solved by source iteration. The sweep equationsconsist of a2 × 2 system for each spatial cell and
quadrature direction. In the non-linear case, these2 × 2 systems are solved by Newton iteration. Each Newton
iteration requires the solution of a linear2 × 2 system. We have recorded the total number of linear2 × 2 solutions
performed for each method in each calculation that was performed. Relative to the LD method, the ED method
requires from 5 to 11 more2 × 2 solves, theN4 method requires from 1.8 to 1.9 more2 × 2 solves, and theN10
method requires very nearly 1.5 times more2× 2 solves. Thus the new method is significantly more economicalthan
the ED method. One might suppose that the minimum number of Newton iterations that can be taken is two, and
therefore that no non-linear method should perform less than less than twice the number of2× 2 solutions performed
with the LD method. However, an advantage of our new closure is that if the slope after the first linear solution for a
given cell and direction during a sweep has a particular sign, no further iteration is required. In contrast, the ED
method requires at least two iterations under all circumstances. Although we do not present the results here, we have
performed calculations with highly anisotropic scattering that demonstrate the ability of the new closure to tolerate
negativities in the scattering sources.

4. CONCLUSIONS

Our new non-linear LD closure is very promising. It largely preserves the LD solution when a fixup is not needed, it
is much less costly than the ED method, it is not much more costly than the LD method, and it tolerates the scattering
source negativities that can arise with highly anisotropicscattering and render exponential-based methods singular.
The optimal choice forN will clearly be problem-dependent, and we intend to investigate this question in the future.
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