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ABSTRACT

We have developed a new parametric non-linear closure ét 4D slab-geometry,Sequations with
linear-discontinuous (LD) spatial differencing that igcty positive and yields the set-to-zero fixup
equations in the limit as the parameter is increased withoutd. Unlike the standard LD equations
with set-to-zero fixup, these non-lineay 8quations, for any finite value of the parameter, are
differentiable and thus amenable to solution via Newtoréshrad. Furthermore, unlike any
exponential-based closure method, our new scheme is rolithstespect to negativities in the scattering
source that often arise with highly anisotropic scatterivg present results indicating that for an
appropriate range of parameteric values, our new methddét\spositive, efficient, and yields
solutions that rapidly approach the standard LD solutiothaspatial mesh is refined.
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1.. INTRODUCTION

The purpose of this paper is to describe a new parametridinear closure for the 1-D slab-geometry quations
with linear-discontinuous (LD) spatial differencing. Neiye fluxes represent a long-standing problem in the
numerical transport community. Various fixup procedureghzeen defined to deal with negativities. One of the
oldest is to simply set negative angular flux values to zerenelier they are obtained during the source iteration
process. This is called the set-to-zero fixup [1]. This pdore works well in purely absorptive problems, but in
problems with scattering, the source iteration procesdi¢pdarly when accelerated) can interact with the fixup
process in such a manner that convergence is never obtdihedinear § equations become non-linear when a
fixup process is imposed, but the resulting equations atmbiynon-differentiable and thus not amenable to solution
via Newton’s method.

There are two strictly positive and differentiablg @ethods based upon the solution of the zero’th and firstalpati
moment equations: the linear-exponential characteris¢ithod [2] and the exponential linear-discontinuous
finite-element method [3]. The characteristic method iy ascurate, but expensive in multidimensions, difficult to
apply on non-orthogonal meshes, and is not applicable wilmear coordinates. The exponential finite-element
method is simpler and more widely applicable than the charistic method, but is less accurate than the
characteristic method in certain types of problems. Perhagst importantly, both of these schemes can fail when
small negativities are present in the scattering sourcealhighly anisotropic scattering expansions.[2].

We have developed a new parametric non-linear closure éot b slab-geometry,Sequations that is strictly
positive and yields the set-to-zero fixup equations in timét las the parameter is increased without bound. Unlike the
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standard LD equations with set-to-zero fixup, these nogalirg, equations, for any finite value of the parameter, are
differentiable and thus amenable to solution via Newtoreshad. Furthermore, unlike any exponential-based
closure method, our new scheme is robust with respect tdivi¢igs in the scattering source that often arise with
highly anisotropic scattering. We present results indicgthat for an appropriate range of parameteric values, our
new method is strictly positive, reasonably efficient, aiedds solutions that rapidly approach the standard LD
solution in the limit as the spatial mesh is refined.

2. THE NEW CLOSURE

The exact zero'th and first-moment equations in slab-gegnfi@t spatial celli can be expressed as follows:

M (¢i+1/2 - ¢i,i—1/2) + o ahi = Qiahi (1)
and
3u (¢i+1/2 — 294 + 1/11:—1/2) + 04,05 o hy = Qi zhi (2

wherey; 1,2 andi;_; s, are the cell edge fluxes; , is the flux averagey; . is the flux slope(; , is the total

source average, ang; ., is the total source slope. The inflow cell-edge flux is knovamfrooundary conditions, so
these two equations have three unknowns and thus requitieesirio close the system. The standard LD method has
the following closure fog: > 0:

Yit1/2 = Via + Yie - (3

This closure yields a negative outflow flux solution whenevef/+; , < —1. The LD set-to-zero fixup closure for
1 > 0 can be expressed as follows:

wi+1/2 = wLa + ’(/)i,x 5 if wi,a + wi,w >0,
= 0, otherwise 4

Our new closure can be expressed as followsg.for 0:

Yiy12 = Via+Vip, I Yiz/thia>0,
Gial [1 = iw/bia + Wia/Via) + o (D Winftia)V] . otherwise — (5)

whereN is a parameter. There are four important properties of tbisuce. The first is that this closure yields an
outflow flux of the same sign as the average flux. If the inflow ffugositive and the total source is positive, this will
ensure a positive outflow flux. The standard LD closure cald g outflow flux of sign opposite to that of the
average flux. The second property is that the outflow flux is @aimfunction ofy; , andi; .. The degree of
smoothness depends updhn More specifically, the closure haé continuous derivatives at the transition point,
Vi.2/Vie = 0. Thus, unlike traditional set-to-zero fixup techniquess thosure yields non-linear moment equations
that can be solved via Newton's method. The third propertigas in the limit asV — oo, this closure converges to
the set-to-zero closure defined in Eq. (4). Finally, thetftoproperty is that given an inflow flux of one sign, and an
average flux of another sign (the sign change presumablyocdoert-physical negativities in the cross section
expansion) the scheme will yield an outflow flux that carrfesgign of the average flux. Exponential-based closures
can yield singular equations under these conditions. Thetify ;1 /2/v;, is plotted versus); . /1; o in Fig. 1 for
the LD closure, the set-to-zero closure, fiie= 2 (N2), N = 4 (N4) andN = 10 (N10) closures. The smoothness
of the new closure and its approach to the set-to-zero @osiih increasingV is clear. Due to space limitations, we
only give closure relationships far > 0, but one can easily construct the equationsfet 0 by analogy.
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Figure 1. Closure relationsips.

3. COMPUTATIONAL RESULTS

We present results for two problems. The first correspondstatal slab thickness dR.0 em, oy = 1.0 em™1,

o, = 0.0 em ™!, with an isotropic flux incident from the left and GauSsquadrature. Several calculations with
various closures were performed for this problem with thexber of cells varying as follows:

Neens = 2,4,8,16, 32, 64. The scalar fluxes for the LD method, the linear exponentsdahtinuous (ED) method,
the N4 method and thév10 method are plotted in Fig. 2. The linear representationiwiach cell for the angular
fluxes in each direction (used to compute the scalar fluxes) alatained for all closures by interpolating the outflow
and average fluxes. The negativity of the LD solution and thetpity of the new closure solutions is evident. The

-@- LD
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Figure 2. Flux solutions for problem 1.

second problem we consider is identical to the first excegitth= 0.5 cm~!. An analytic solution is available for
this problem [4]. The L errors for the cell-averaged scalar fluxes as a functionehtimber of cells are plotted in
Fig. 3 for the LD method, the ED method, thél method and theév10 method. Note that th&/4 and N10 solutions
converge to the LD solution as the mesh is refined. As expehteti 10 solution converges to the LD solution more
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Figure 3. Error versus cell width for various closures.

rapidly than theV4 solution. The ED solution is also the most accurate of alitsmhs in this case, but this is a
problem-dependent result, as demonstrated by additiaf@llations not shown here. Theg 8quations for all
methods are solved by source iteration. The sweep equatimssst of & x 2 system for each spatial cell and
guadrature direction. In the non-linear case, thiese2 systems are solved by Newton iteration. Each Newton
iteration requires the solution of a lineax 2 system. We have recorded the total number of likear2 solutions
performed for each method in each calculation that was padd. Relative to the LD method, the ED method
requires from 5 to 11 more x 2 solves, theV4 method requires from 1.8 to 1.9 maex 2 solves, and théV'10
method requires very nearly 1.5 times m@re 2 solves. Thus the new method is significantly more econonttiead
the ED method. One might suppose that the minimum number widteiterations that can be taken is two, and
therefore that no non-linear method should perform less s than twice the number »fx 2 solutions performed
with the LD method. However, an advantage of our new closutiat if the slope after the first linear solution for a
given cell and direction during a sweep has a particular, sigriurther iteration is required. In contrast, the ED
method requires at least two iterations under all circurmesta. Although we do not present the results here, we have
performed calculations with highly anisotropic scattgrihat demonstrate the ability of the new closure to tolerate
negativities in the scattering sources.

4. CONCLUSIONS

Our new non-linear LD closure is very promising. It largelggerves the LD solution when a fixup is not needed, it
is much less costly than the ED method, it is not much mordyctsn the LD method, and it tolerates the scattering
source negativities that can arise with highly anisotr@giattering and render exponential-based methods singular
The optimal choice foV will clearly be problem-dependent, and we intend to inggg# this question in the future.
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