
The STAPL Parallel Container Framework ∗

Gabriel Tanase Antal Buss Adam Fidel Harshvardhan Ioannis Papadopoulos Olga Pearce
Timmie Smith Nathan Thomas Xiabing Xu Nedal Mourad Jeremy Vu Mauro Bianco

Nancy M. Amato Lawrence Rauchwerger
Parasol Lab, Dept. of Computer Science and Engineering

Texas A&M University, College Station, TX
stapl@cse.tamu.edu

Abstract
The Standard Template Adaptive Parallel Library (STAPL) is a par-
allel programming infrastructure that extends C++ with support for
parallelism. It includes a collection of distributed data structures
calledpContainers that are thread-safe, concurrent objects, i.e.,
shared objects that provide parallel methods that can be invoked
concurrently. In this work, we present theSTAPL Parallel Con-
tainer Framework (PCF), that is designed to facilitate the devel-
opment of generic parallel containers. We introduce a set of con-
cepts and a methodology for assembling apContainer from ex-
isting sequential or parallel containers, without requiring the pro-
grammer to deal with concurrency or data distribution issues. The
PCFprovides a large number of basic parallel data structures (e.g.,
pArray,pList,pVector,pMatrix,pGraph,pMap,pSet).
The PCF provides a class hierarchy and a composition mecha-
nism that allows users to extend and customize the current con-
tainer base for improved application expressivity and performance.
We evaluateSTAPL pContainer performance on a CRAY XT4
massively parallel system and show thatpContainer methods,
genericpAlgorithms, and different applications provide good
scalability on more than 16,000 processors.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming

General Terms Languages, Design, Performance

Keywords Parallel, Programming, Languages, Libraries, Data,
Structures

∗ This research supported in part by NSF awards CRI-0551685, CCF-
0833199, CCF-0830753, IIS-096053, IIS-0917266, NSF/DNDOaward
2008-DN-077-ARI018-02, by the DOE NNSA under the Predictive Science
Academic Alliances Program by grant DE-FC52-08NA28616, by THECB
NHARP award 000512-0097-2009, by Chevron, IBM, Intel, Oracle/Sun
and by Award KUS-C1-016-04, made by King Abdullah Universityof Sci-
ence and Technology (KAUST). This research used resources of the Na-
tional Energy Research Scientific Computing Center, which issupported by
the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231. Mourad is a masters student at KAUST who did an
internship at the Parasol Lab. Tanase is currently a Research Staff Member
at IBM T.J. Watson Research Center. Bianco is currently a scientist at the
Swiss National Supercomputing Centre.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0119-0/11/02. . . $10.00

1. Introduction
Parallel programming is becoming mainstream due to the increased
availability of multiprocessor and multicore architectures and the
need to solve larger and more complex problems. The Standard
Template Adaptive Parallel Library (STAPL) [3] is being developed
to help programmers address the difficulties of parallel program-
ming. STAPL is a parallel C++ library with functionality similar to
STL, the ISO adopted C++ Standard Template Library [19].STL is
a collection of basic algorithms, containers and iterators that can
be used as high-level building blocks for sequential applications.
Similar toSTL, STAPL provides building blocks for writing parallel
programs – a collection of parallel algorithms (pAlgorithms),
parallel and distributed containers (pContainers), andpViews
to abstract data accesses topContainers. pAlgorithms are
represented inSTAPL as task graphs calledpRanges. TheSTAPL
runtime system includes a communication library (ARMI) and an
executor that executespRanges. Sequential libraries such as
STL [19], BGL [10], andMTL [9], provide the user with a collection
of data structures that simplifies the application development pro-
cess. Similarly,STAPL provides the Parallel Container Framework
(PCF) which includes a set of elementarypContainers and tools
to facilitate the customization and specialization of existingpCon-
tainers and the development of new ones.

pContainers are distributed, thread-safe, concurrent objects,
i.e., shared objects that provide parallel methods that can be in-
voked concurrently. A large number of parallel data structures have
been proposed in the literature. They are often complex, address-
ing issues related to data partitioning, distribution, communication,
synchronization, load balancing, and thread safety. The complex-
ity of building such structures for every parallel program is one
of the main impediments to parallel program development. To al-
leviate this problem we are developing theSTAPL Parallel Con-
tainer Framework(PCF). It consists of a collection of elementary
pContainers and methods to specialize or compose them into
pContainers of arbitrary complexity. Thus, instead of building
distributed containers from scratch in anad-hocfashion, program-
mers can use inheritance to derive new specialized containers and
composition to generate complex, hierarchical containers that nat-
urally support hierarchical parallelism. Moreover, thePCFprovides
the mechanisms to enable any container, sequential or parallel, to
be used in a distributed fashion without requiring the programmer
to deal with concurrency issues such as data distribution.

TheSTAPL PCFmakes several novel contributions.

• Object oriented design: Provides a set of classes and rules for
using them to build newpContainers and customize existing
ones.

• Composition: Supports composition ofpContainers that al-
lows the recursive development of complexpContainers
that support nested parallelism.

• Interoperability: Provides mechanisms to generate a wrapper
for any data structure, sequential or parallel, enabling it to be
used in a distributed, concurrent environment.

• Library: It provides a library of basicpContainers con-
structed using thePCFas initial building blocks.

Some important properties ofpContainers supported by the
PCFare noted below.

Shared object view.EachpContainer instance is globally
addressable. This supports ease of use, relieving the programmer
from managing and dealing with the distribution explicitly, unless
desired. This is accomplished using a generic software address
translation mechanism that uses the same concepts for allpCon-
tainers in our framework.

Arbitrary degree and level of parallelism. For pContai-
ners to provide scalable performance on shared and/or distributed
memory systems they must support an arbitrary, tunable degree of
parallelism, e.g., number of threads. Moreover, given the impor-
tance of hierarchical (nested) parallelism for current and foresee-
able architectures, it is important for composedpContainers to
allow concurrent access to each level of their hierarchy to better
exploit locality.

Instance-specific customization.The pContainers in the
PCF can be dynamic and irregular and can adapt (or be adapted
by the user) to their environment. ThePCF facilitates the design
of pContainers that support advanced customizations so that
they can easily be adapted to different parallel applications or even
different computation phases of the same application. For example,
a pContainer can dynamically change its data distribution or
adjust its thread safety policy to optimize the access pattern of
the algorithms accessing the elements. Alternatively, the user can
request certain policies and implementations which can override
the provided defaults or adaptive selections.

Previous STAPL publications present individualpContai-
ners, focusing on their specific interfaces and performance (e.g.,
associative containers [25],pList [26], pArray [24]) or provide
a high level description of theSTAPL library as a whole, of which
pContainers are only one component [3]. This paper presents
for the first time thepContainer definition and composition for-
malism (Section 3), and thepContainer framework (PCF) base
classes from which allpContainers derive (Section 4).

2. STAPL Overview
STAPL [2, 3, 22, 27] is a framework for parallel C++ code devel-
opment (Fig. 1). Its core is a library of C++ components imple-
menting parallel algorithms (pAlgorithms) and distributed data
structures (pContainers) that have interfaces similar to the (se-
quential) C++ standard library (STL) [19]. Analogous toSTL al-
gorithms that useiterators, STAPL pAlgorithms are written in
terms ofpViews [2] so that the same algorithm can operate on
multiplepContainers.

pAlgorithms are represented bypRanges. Briefly, apRange
is a task graph whose vertices are tasks and whose edges represent
dependencies, if any, between tasks. A task includes bothwork
(represented byworkfunctions) and data (from pContainers,
generically accessed throughpViews). Theexecutor, itself a
distributed shared object, is responsible for the parallel execution
of computations represented bypRanges. Nested parallelism can
be created by invoking apAlgorithm from within a task.

The runtime system (RTS) and its communication library
ARMI (Adaptive Remote Method Invocation) provide the inter-
face to the underlying operating system, native communication
library and hardware architecture [22]. ARMI uses the remote
method invocation (RMI) communication abstraction to hide the
lower level implementations (e.g., MPI, OpenMP, etc.). A remote
method invocation inSTAPL can be blocking (sync rmi) or non-
blocking (async rmi). ARMI provides the fence mechanism

User Application Code

pAlgorithms pViews

pRange

Run-time System

Pthreads, OpenMP, MPI, Native, ...

A
da

pt
iv

e
F

ra
m

ew
or

k

Scheduler Executor Performance
Monitor

ARMI Communication
 Library

pContainers

Figure 1. STAPL Overview

(rmi fence) to ensure the completion of all previous RMI calls.
The asynchronous calls can be aggregated by the RTS in an internal
buffer to minimize communication overhead.

The RTS provideslocationsas an abstraction of processing ele-
ments in a system. Alocationis a component of a parallel machine
that has a contiguous memory address space and has associated
execution capabilities (e.g., threads). A location may be identified
with a process address space. Different locations can communicate
to each other only through RMIs. InternalSTAPL mechanisms as-
sure an automatic translation from one space to another, presenting
to the less experienced user a unified data space. For more experi-
enced users, the local/remote distinction of accesses can be exposed
and performance enhanced for a specific application or application
domain.STAPL allows for (recursive) nested parallelism.

3. The STAPL Parallel Container
Data structures are essential building blocks of any generic pro-
gramming library. Sequential libraries such asSTL [19], BGL [10],
andMTL [9], provide data structures such as arrays, vectors, lists,
maps, matrices, and graphs. A parallel container is an object ori-
ented implementation of a data structure designed to be used effi-
ciently in a parallel environment. Design requirements of theSTAPL
pContainer are listed below.

Scalable performance.pContainers must provide scalable
performance on both shared and distributed memory systems. The
performance of thepContainer methods must achieve the best
known parallel complexity. This is obtained by efficient algorithms
coupled with non-replicated, distributed data structures that allow
a degree of concurrent access proportional to the degree of desired
parallelism, e.g., the number of threads.

Thread safety and memory consistency model.When needed,
the pContainer must be able to provide thread safe behavior
and respect a memory consistency model. Currently, we support a
relaxed consistency model. Due to space constraints, these issues
are not addressed further in this paper; see [23] for details.

Shared object view.EachpContainer instance is globally
addressable, i.e., it provides a shared memory address space. This
supports ease of programming, allowing programmers to ignore the
distributed aspects of the container if they so desire.

Composition.The capability to composepContainers (i.e.,
pContainers of pContainers) provides a natural way to ex-
press and exploit nested parallelism while preserving locality. This
feature is not supported by other general purpose parallel libraries.

Adaptivity. A design requirement of theSTAPL pContainer
is that it can easily be adapted to the data, the computation, and
the system. For example, different storage options can be used for
dense or sparse matrices or graphs or the data distribution may be
modified during program execution if access patterns change.

3.1 pContainer definition

A STAPL pContaineris a distributed data structure that holds a fi-
nitecollection of typed elementsC, each with a unique global iden-
tifier (GID), their associated storageS, and an interfaceO (meth-
ods or operations) that can be applied to the collection. The inter-
faceO specifies an Abstract Data Type (ADT), and typically in-
cludes methods to read, write, insert or delete elements and meth-
ods that are specific to the individual container (e.g.,splice for
apList or out degree for apGraph vertex).

ThepContainer also includes meta information supporting
data distribution: adomainD, that is the union of the GIDs of the
container’s elements, and a mappingF from the container’s do-
mainD to the elements inC. To support parallel use in a distributed
setting, the collectionC and the domainD are partitioned in a man-
ner that is aligned with the storage of the container’s elements.

Thus, apContainer is defined as:

pC
def
= (C,D,F ,O,S) (1)

The tuple(C,D,F ,O) is known as thenative pViewof the
pContainer. As described in [2],STAPL pViews generalize
the iterator concept and enable parallelism by providing random
access to collections of their elements. InpViews, the partition
of D can be dynamically controlled and depends on the needs of
the algorithm (e.g., a column-based partition of apMatrix for an
algorithm that processes the matrix by columns) and the desired
degree of parallelism (e.g., one partition for each processor). The
nativepView associated with apContainer is a special view in
which the partitioned domainD is aligned with the distribution of
the container’s data. Performance is enhanced for algorithms that
can use nativepViews.

A pContainer stores its elements in a non-replicated fash-
ion in a distributed collection ofbase containers(bContainers),
each having a corresponding nativepView. pContainers can
be constructed from any base container, sequential or parallel, so
long as it can support the required interface. ThepContainers
currently provided inSTAPL use the correspondingSTL containers
(e.g., theSTAPL pVector uses theSTL vector), containers from
other sequential libraries (e.g.,MTL [9] for matrices), containers
available in libraries developed for multicore (e.g.,TBB [14] con-
current containers), or otherpContainers. This flexibility allows
for code reuse and supports interoperability with other libraries.

ThepContainer provides a shared object view that enables
programmers to ignore the distributed aspects of the container if
they so desire. As described in more detail in Section 4.3, when
a hardware mechanism is not available, the shared object view
is provided by a software address resolution mechanism that first
identifies thebContainer containing the required element and
then invokes thebContainer methods in an appropriate manner
to perform the desired operation.

3.2 pContainer composability

There are many common data structures that are naturally described
as compositions of existing structures. For example, apVector
of pLists provides a natural adjacency list representation of a
graph. To enable the construction and use of such data structures,
we require that the composition ofpContainers be apCon-
tainer, i.e., thatpContainers are closed under composition.

An important feature of composedpContainers is that they
support hierarchical parallelism in a natural way – each level of
the nested parallel constructs can work on a corresponding level
of the pContainer hierarchy. If well matched by the machine
hierarchy, this can preserve existing locality and improve scalabil-
ity. Consider the example of apArray of pArrays. This can be
declared inSTAPL using the following syntax:

p array<p array<int>> pApA(10);
Such a composed data structure can distribute both the top level and
the nestedpArrays in various ways across the machine. Access-

ing the elements of the nestedpArrays is done naturally using
a concatenation of the methods of the outer and innerpArrays.
For example,pApA.get element(i).get element(j) re-
turns a reference to thej-th element belonging to thei-th nested
pArray. Moreover, data stored in a composed data structure can
be efficiently exploited by nestedpAlgorithms. In thepApA
example, computing the minimum element of each of the nested
pArrays can be done using a parallelforall on the outer
pArray, and within each nested one, a reduction to compute the
minimum value.

In the remainder of this section we formalize thepContai-
ner composition definition. Theheightof apContainer is the
depth of the composition, i.e., the number of nestedpContai-
ners. LetpC1 = (C1,D1,F1,O1,S1) andpC2 = (C2,D2,F2,
O2,S2) bepContainers of heightH1 andH2, respectively. The
composedpContainer pC = pC1 ◦ pC2 is of heightH1 + H2.
In pC, each element ofpC1[i], i ∈ D1, is an instance ofpC2,
calledpC2i = (C2i,D2i,F2i,O2i,S2i). Each component ofpC is
derived appropriately from the corresponding components ofpC1

andpC2. For example, in the special case when all the mapping
functionsF2i and operationsO2i are the same, we have

D =
[

i∈D1

({D1[i]} × D2i)

F = (F1,F2)

O = (O1,O2)

whereF(x, y) = (F1,F2)(x, y) = (F1(x),F2(y)), (x, y) ∈
D. The componentsC and S are isomorphic toD and defined
similarly to it. With this formalism, arbitrarily deep hierarchies can
be defined by recursively composingpContainers.

Given a composedpContainer PC = (C,D,F ,O,S), of
height H, the GID of an element at levelh ≤ H is a tuple
(x1, . . . , xh). Similarly, the mapping function to access apCon-
tainer at levelh is a subsequence (prefix) of the tuple of func-
tionsF , Fh(x1, . . . , xh) = (F1(x1),F2(x2), . . . ,Fh(xh)). The
operations available at levelh areOh. To invoke a method at level
h, the appropriate element of the GID tuple has to be passed to each
method invoked in the hierarchy, as shown in the example given at
the beginning of this section.

pContainer composition is made without loss of informa-
tion, preserving the meta information of its components in the same
hierarchical manner. For example, if two distributedpContai-
ners are composed, then the distribution information of the ini-
tial pContainers will be preserved in the newpContainer.
A feature of our composition operation is that it allows for (static)
specialization if machine mapping information is provided. For ex-
ample, if the lower (bottom) level of the composedpContainer
is distributed across a single shared memory node, then its mapping
F can be specialized for this environment, e.g., some methods may
turn into empty function calls.

4. The Parallel Container Framework (PCF)
An objective of theSTAPL Parallel Container Framework (PCF)
is to simplify the process of developing generic parallel contain-
ers. It is a collection of classes that can be used to construct new
pContainers through inheritance and specialization that are cus-
tomized for the programmer’s needs while preserving the proper-
ties of the base container. In particular, thePCFcan generate a wrap-
per for any standard data structure, sequential or parallel, that has
the meta information necessary to use the data structure in a dis-
tributed, concurrent environment. This allows the programmer to
concentrate on the semantics of the container instead of its con-
currency and distribution management. Thus, thePCF makes de-
veloping apContainer almost as easy as developing its sequen-
tial counterpart. Moreover, thePCF facilitates interoperability by

Base pContainer

 Static
pContainer

 Dynamic
pContainer

 Indexed
 <Value>

 Associative
 <Key,Value>

 Relational
<Element,Relat ion>

 Sequence
 <Value>

Associative pContainers Relationship pContainers

User Specific
Container
Extensions

Index is the implicit
 key

Simple Associative
 <key=va lue>
Pair Associative
 <key, value>

pArray pMatr ix pVector pList pGraphpMap, pSet

(a)

//bcontainer definition:
//sequential graph using vector storage

1: typedef pg_base_container<vector,..> bpg_s;
//and a static partition

2: typedef pg_static<bpg_s,..> partition_s;

//sequential graph using std::map storage
3: typedef pg_base_container<map,..> bpg_d;

//and a dynamic partition
4: typedef pg_fwd<bpg_d,..> partition_d;

//pgraph with static partition
5: p_graph<DIRECTED,MULTI,partition_s> pg_s(N);

//pgraph with dynamic storage and
//method forwarding

6: p_graph<DIRECTED,MULTI,partition_d> pg_d(N);

(b)

Figure 2. (a) PCFdesign. (b)pContainer customization.

enabling the use of parallel or sequential containers from other li-
braries, e.g.,MTL [9], BGL [10] or TBB [14].

STAPL provides a library ofpContainers constructed us-
ing the PCF. These include counterparts ofSTL containers (e.g.,
pVector, pList [26], and associative containers [25] such as
pSet, pMap, pHashMap, pMultiSet, pMultiMap) and addi-
tional containers such aspArray [24], pMatrix, andpGraph.

Novice programmers can immediately use the available data
structures with their default settings. More sophisticated paral-
lel programmers can customize or extend the default behavior to
further improve the performance of their applications. If desired,
this customization can be modified by the programmer for every
pContainer instance.

4.1 pContainer Framework design

The PCF is designed to allow users to easily buildpContai-
ners by inheriting from appropriate modules. It includes a set of
base classes representing common data structure features and rules
for how to use them to buildpContainers. Figure 2(a) shows
the main concepts and the derivation relations between them; also
shown are theSTAPL pContainers that are defined using those
concepts. AllSTAPL pContainers are derived from thepCon-
tainer base class which is in charge of storing the data and
distribution information. The remaining classes in thePCF pro-
vide minimal interfaces and specify different requirements about
bContainers. First, thestatic and dynamic pContai-
ners are classes that indicate if elements can be added to or re-
moved from thepContainer. The next discrimination is be-
tween associativeand relational pContainers. In associative
containers, there is an implicit or explicit association between a key
and a value. For example, in an array there is an implicit associa-
tion between the index and the element corresponding to that index;
we refer to such (multi-dimensional) arrays as indexedpContai-
ners. In other cases, such as a hashmap, keys must be stored ex-
plicitly. The PCF provides anassociative base pContai-
ner for such cases. Therelational pContainers include
data structures that can be expressed as a collection of elements
and relations between them. This includes graphs and trees, where
the relations are explicit and may have values associated with them
(e.g., weights on the edges of a graph), and lists where the relations
between elements are implicit.

All classes of thePCFhave default implementations that can be
customized for eachpContainer instance using template argu-
ments calledtraits. This allows users to specialize various aspects,
e.g., thebContainer or the data distribution, to improve the per-
formance of their data structures. In Figure 2(b) we show an ex-
ample ofSTAPL pseudocode illustrating how users can customize

an existingpGraph implementation. Users can select the storage
by providing the type of an existingbContainer and similarly
for the partition. Figure 2(b), line 5, shows the declaration of a di-
rectedpGraph allowing multiple edges between the same source
and target vertices and using a static partition. With a static par-
tition, users need to declare the size of thepGraph at construc-
tion time and subsequent invocations of theadd vertex method
will trigger an assertion. Figure 2(b), line 6, shows the declaration
of a pGraph using a dynamic partition that allows for addition
and deletion of both vertices and edges. More details and perfor-
mance results regarding the benefits of having different partitions
and types of storage are discussed in Section 5.2.

4.2 pContainer Interfaces

For each concept in thePCF (Figure 2(a)) there is a correspond-
ing interface consisting of various constructors and methods as
described in [23].pContainer methods can be grouped in
three categories: synchronous, asynchronous and split phase. Syn-
chronous methods have a return type and guarantee that the method
is executed and the result available when they return. Asynchronous
methods have no return value and return immediately to the calling
thread. Split phase execution is similar to that in Charm++ [17].
The return type of a split phase method is a future that allocates
space for the result. The invocation returns immediately to the user
and the result can be retrieved by invoking theget method on the
future which will return immediately if the result is available or
block until the result arrives. Performance trade-offs between these
three categories of methods are discussed in Section 5.5.

4.3 Shared Object View implementation

Recall that the elements of apContainer are stored in non-
replicated fashion in a distributed collection ofbContainers. An
important function of thePCF is to provide a shared object view
that relieves the programmer from managing and dealing with the
distribution explicitly, unless he desires to do so. In this section, we
describe how this is done. Its performance is studied in Section 5.2.

The fundamental concept required to provide a shared object
view is that eachpContainer element has a unique global iden-
tifier (GID). TheGID provides the shared object abstraction since
all references to a given element will use the sameGID. Exam-
ples ofGIDs are indices forpArrays, keys forpMaps, and vertex
identifiers forpGraphs.

The PCF supports the shared object view by providing an ad-
dress translation mechanism that determines where an element with
a particularGID is stored (or should be stored if it does not already
exist). We now briefly review thePCFcomponents involved in this
address translation. As defined in Section 3.1, the set ofGIDs of a

pContainer is called adomainD. For example, the domain of a
pArray is a finite set of indices while it is a set of keys for an as-
sociativepContainer. A pContainer’s domain is partitioned
into a set of non-intersectingsub-domainsby apartition class,
itself a distributed object that provides the mapF from a GID to
the sub-domain that contains it, i.e., a directory. There is a one-to-
one correspondence between a sub-domain and abContainer
and in general, there can be multiplebContainers allocated in
a location. Finally, a class called apartition-mapper maps
a sub-domain (and its correspondingbContainer) to the loca-
tion where it resides, and alocation-manager manages the
bContainers of apContainer mapped to a given location.

(BCID, LOC)

computation
transfer

partition

yes

mapper

c
o
m
p
u
t
a
t
i
o
n

t
r
a
n
s
f
e
r

t
o

L
O
C

GID

element
reference

locationmanager

base container

(BCID, LID)

BCID valid?

to LID

Figure 3. pContainer modules for performing address resolu-
tion to find the element reference corresponding to a givenGID.

Figure 3 describes the address resolution procedure. Given the
uniqueGID identifying apContainer element, thepartition
class is queried about the sub-domain/bContainer associated
with the requestedGID. If the bContainer information (speci-
fied by abContainer identifier, orBCID) is not available, the
partition provides information about the location (LOC) where
thebContainer information might be retrieved, and the process
is restarted on that location. If theBCID is available and valid, then
thepartition-mapper returns information about the location
where thebContainer resides (LID).

For staticpContainers, i.e., containers that do not support
the addition and deletion of elements, the domain does not change
during execution. In this case, it is possible to optimize the address
translation mechanism by employing a static partition that com-
putes the mapping from aGID to abContainer and a location in
constant time by evaluating an expression or doing a table lookup.
For example, apArray with N elements can map the indexi to
the locationi%P , whereP is the number of available locations. Or,
for apGraphwhere the number of vertices is fixed at construction,
we can use a static partition that computes a vertex location in con-
stant time using a hash table.

Dynamic pContainers, where elements can be added or
deleted, need to employ dynamic partitions. Currently, we pro-
vide a dynamic partition implemented as a distributed directory.
The directory statically associates a home for an individualGID
that always knows the location where the respectiveGID is stored.
If the element happens to migrate to a new location the home needs
to be updated with information about the new location. With this
directory implementation, accessing an element corresponding to a
givenGID involves two steps. First, find and query the home where
the element lives and second, access the element on its location.

4.4 Method Forwarding

For apContainer to operate on a non-local element, it must de-
termine the element’s location and invoke the method at that loca-
tion. Hence, if the element’s address cannot be determined locally,

then the address resolution process may add significantly to the crit-
ical path of the method’s execution. To alleviate this problem, we
combine the address resolution and the method execution into one
operation. This mechanism, referred to asmethod forwarding, al-
lows the method to be forwarded along with the address resolution
process instead of first fetching the address from a remote location
and then instantiating the remote method invocation.

As will be shown in Section 5.2, a partition using forwarding
provides improved performance over a directory that determines
theGID’s location using synchronous communication.

5. pContainer Performance Evaluation
In this section, we evaluate the performance of representative
pContainers developed using thePCF: pArray,pList,pMat-
rix, pGraph, pHashMap and composedpContainers. In
Section 5.1, we study the scalability of parallel methods for
pArray, pGraph andpList. We examine trade-offs for various
address resolution mechanisms in Section 5.2 and forpContai-
ner composition in Section 5.3. Sections 5.4, 5.5, and 5.6 analyze
generic parallel algorithms, graph algorithms, and a MapReduce
application, respectively.

With the exception of MapReduce, we conducted all our ex-
perimental studies on a 38,288 core Cray XT4 (CRAY4) available
at NERSC. There are 9,572 compute nodes each with a quad core
Opteron running at 2.3 GHz and a total of 8 GB of memory (2 GB
of memory per core). The MapReduce study was performed on a
Cray XT5 (CRAY5) with 664 compute nodes, each containing two
2.4 GHz AMD Opteron quad-core processors (5,312 total cores). In
all experiments, a location contains a single processor core, and the
terms can be used interchangeably.

All the experiments in this paper, with the exception of MapRe-
duce, show standard weak scaling where the work per processor is
kept constant. As we increase the number of cores the amount of
work increases proportionally and the baseline for each experiment
is the time on four cores which is the number of cores in a compute
node on CRAY4. Confidence intervals are included in the plots.
The machines used are very stable though and the variations for
each experiment are small, so the confidence intervals are often not
visible in the plots.

5.1 pContainer Methods

The performance of variousSTAPL pContainers has been stud-
ied in [4, 24–26]. In this section, we examine the performance
of novel pContainer methods in the context of thepArray,
pList andpGraph data structures.

To evaluate the scalability of thepContainer methods we
designed a simple kernel in which allP available cores (locations)
concurrently performN/P invocations, for a given number of el-
ementsN . We report the time taken to perform allN operations
globally. The measured time includes the cost of a fence to en-
sure the methods are globally finished. In Figure 4(a) we show
the performance forpArray set element,get element and
split get element. We performed a weak scaling study with
20M elements and 20M method invocations per location. In this
experiment there are 1% remote accesses. We observe good scala-
bility for the asynchronous invocations with only 5.8% increase in
execution time as we scale the number of cores from 4 to 16384.
For the synchronous methods, the execution time increases 237%
relative to 4 cores and 29% relative to 8 cores. The big increase
in execution time from 4 to 8 is due to the inter-node communi-
cation which negatively affects performance, especially for syn-
chronous communication. For thesplit get element we per-
formed two experiments where we invoke groups of 1000 or 5000
split phase operations before waiting for them to complete. The
split phase methods have an inherent overhead for allocating the
futures on the heap, but they do enable improved performance and
scalability relative to the synchronous methods. Split phase execu-

 0

 5

 10

 15

 20

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: pArray Methods Weak Scaling
 20M elements per location

set element
get element

split phase get element 1K
split phase get element 5K

(a)pArray

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4:pList Insert and Insert Async Weak Scaling
 1% and 2% remote operations per location

pList insert 1%
pList insert async 1%

pList insert 2%
pList insert async 2%

(b) pList

Figure 4. CRAY4: (a)pArray methodsset element, get element and split phaseget element. 20M method invocations per
location with 1% remote (b) 5MpList method invocations with 1% and 2% remote. The number of remote accesses is a variable that we
can control as part of our experimental setup.

 0.01

 0.1

 1

 10

 100

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Static pGraph Methods Weak Scaling
 SSCA#2, 500K vertices, 11M edges/location

add vertex
add edge

find vertex
find edge

(a) StaticpGraph

 0.1

 1

 10

 100

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Dynamic pGraph Methods Weak Scaling
 SSCA#2, 500K vertices, 11M edges/location

add vertex
add edge

find vertex
find edge

(b) DynamicpGraph

Figure 5. Evaluation of static and dynamicpGraph methods while using the SSCA2 graph generator; 500k vertices, 11.5M edges,∼40
remote edges per location;∼23 edges per vertex (a) For the staticpGraph all vertices are built in the constructor; (b) The dynamicpGraph
inserts vertices usingadd vertex method.

tion enables the aggregation of the requests by the runtime system
as well as allowing communication and computation overlap. For
the split get element the overall execution time increases
4.5% as we scale the number of cores from 4 to 16384, when 5000
invocations are started before waiting the result.

In Figure 4(b), we show a weak scaling experiment on apList
using 5 million elements per core and up to 16384 cores (81.9
billion total method invocations performed). The synchronous
insert adds an element at a given position and returns a ref-
erence to the newly inserted element. Theinsert async inserts
the element asynchronously and has no return value. In this experi-
ment, the majority of the invocations are executed locally with 1%
and 2%, respectively, being executed remotely. We observe good
scalability of the two methods up to 16384 cores. The asynchronous
versions of thepContainer methods are faster as they can over-
lap communication with computation and don’t return information
about the position where the element was added.

The pGraph is a relational data structure consisting of a
collection of vertices and edges. ThepGraph is represented
as an adjacency list and depending on its properties, different
bContainers can be used to optimize the data access. Here,
we evaluate a static and a dynamicpGraph. The staticpGraph

allocates all its vertices in the constructor and subsequently only
edges can be added or deleted. It uses a static partition that is im-
plemented as an expression and has abContainer that uses
a std::vector to store the vertices, each of which uses a
std::list to store edges. The dynamicpGraph uses a dis-
tributed directory to implement its partition and itsbContainer
usesstd::hash map for vertices andstd::list for edges.
We chose thestd::hash map in the dynamic case because it
allows for fast insert and find operations. As shown in Figure 2(a),
the static or dynamic behavior is achieved by passing the corre-
sponding template arguments to thepGraph class.

We performed a weak scaling experiment on CRAY4 using a
2D torus where each core holds a stencil of 1500×1500 vertices
and corresponding edges, and a random graph as specified in the
SSCA2 benchmark [1]. SSCA2 generates a set of clusters where
each cluster is densely connected and the inter cluster edges are
sparse. We use the following parameters for SSCA2: cluster size =
(V/P)1/4, whereV is the number of vertices of the graph, max-
imum number of parallel edges is 3, maximum edge weight isV ,
probability of intra clique edges is 0.5 and probability of an edge
to be unidirectional 0.3. Figure 5 shows the execution time for
add vertex, add edge, find vertex andfind edges for

(a)

 0.1

 1

 10

 100

 1000

 0.03 0.33 3.4 25 50

E
xe

cu
tio

n
T

im
es

 (
se

c)

Percentage of Remote Edges

Method Forwarding for P=1024

static
fwd

no fwd

(b)

Figure 6. Find sources in a directedpGraph using static, dynamic with forwarding and dynamic with no forwarding partitions. Execution
times for graphs with various percentages of remote edges for (a) various core counts and for (b) 1024 cores.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Composed pArray versus pMatrix
 Px100M elements

allo and fill pa<pa>
alloc and fill pMatrix

min rows pa<pa>
min row pMatrix

(a)P × 100M Matrix

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Composed pArray versus pMatrix
 100Px1M elements

alloc and fill pa<pa>
alloc and fill pMatrix

min rows pa<pa>
min rows pMatrix

(b) 100 · P × 1M Matrix

Figure 7. Comparison ofparray<parray<>> (pa < pa >) andpMatrix on computing the minimum value for each row of a matrix.
Weak scaling experiment with (a)P × 100M and (b)100 · P × 1M elements.parray<parray<>> takes longer to initialize while the
algorithm executions are very similar.

the SSCA2 input. For the dynamicpGraph the container is ini-
tially empty and vertices are added usingadd vertex. As seen
in the plots, the methods scale well up to 16384 cores. The addition
of edges is a fully asynchronous parallel operation. Adding vertices
in the dynamicpGraph causes additional asynchronous commu-
nication to update the directory information about where vertices
are stored. The asynchronous communication overlaps well with
the local computation of adding the vertices in thebContainer,
thus providing good scalability up to a very large number of cores.
The execution time increases 2.96 times for theadd vertex in
the dynamicpGraph as we scale from 4 to 16384 cores. The mesh
results are not included due to space limitations but they exhibit
similar trends as the SSCA2 results.

5.2 Evaluation of address translation mechanisms

In this section, we evaluate the performance of the three types
of address translation mechanisms introduced in Section 4.3: a
static partition mappingGIDs tobContainers, and distributed
dynamic partitions with and without method forwarding.

We evaluate the performance of the three partitions using a sim-
plepGraph algorithm that finds source vertices (i.e., vertices with
no incoming edges) in a directed graph. The algorithm traverses
the adjacency list of each vertex and increments a counter on the

target vertex of each edge. The communication incurred by this
algorithm depends on the number of remote edges, i.e., edges con-
necting vertices in two differentbContainers. We considered
four graphs, all 2D tori, which vary according to the percentage
of remote edges: .33%, 3.4%, 25% and 50%. This was achieved
by having each core hold a stencil of 150×15,000, 15×150,000,
2×1,125,000 and 1×2,250,000, respectively.

Figure 6(a) provides a summary of the execution times for
the different percentages of remote edges and different numbers
of cores, where scalability can be appreciated together with the
increasing benefit of forwarding as the percentage of remote edges
increases. In Figure 6(b) we include results for the three approaches
on all four types of graphs for 1024 cores. As can be seen, for
the methods with no forwarding and synchronous communication,
the execution time increases as the percentage of remote edges
increases. The static method and the method with forwarding track
one another and do not suffer as badly as the percentage of remote
edges increases. This indicates that the forwarding approach can
scale similarly to the optimized static partition.

5.3 pContainer composition evaluation

So far we have made a case for the necessity ofpContainer
composition to increase programmer productivity. Instead of di-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Generate Weak Scaling

pArray
pList

pMatrix

(a)stapl::generate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Accumulate Weak Scaling

pArray
pList

pMatrix
dynamic pGraph

(b) stapl::accumulate

Figure 8. Execution times forstapl::generate andstapl::accumulate algorithms on CRAY4. Same algorithm applied to
different data structures. ThepArray, pList andpMatrix are with 20M elements per location. The inputpGraph has a 1500x1500
mesh per location.

rectly building a complexpContainer, the programmer can
compose one from the basicpContainers available in thePCF
and shorten development and debugging time. The issue we study
here is the impact of composition on performance.

For this comparative performance evaluation we compute the
minimum element in each row of a matrix using both thepMat-
rix pContainer (which is available in thePCF library) and
the composedpArray of pArrays. The algorithm code is the
same for the two cases, due to the access abstraction mechanism
provided bySTAPL. It calls a parallelforall across the rows,
and within each row, a reduction to compute the minimum value.
We also measure the time to create and initialize the storage. The
pMatrix allocates the entire structure in a single step, while the
pArray of pArrays allocates the outer structure first and then
allocates the singlepArray elements individually. In Figure 7
we include, for CRAY4, the execution times for allocating and
initializing the two data structures and the times to run the min-
of-each-row algorithm, in a weak scaling experiment. Figure 7(a)
shows the case of aP ×100M element matrix (P is the number of
cores), while Figure 7(b) shows the case of a100 ·P ×1M element
matrix. The aggregated input sizes are overall the same.

As expected, thepArray of pArrays initialization time is
higher than that for apMatrix. The time for executing the al-
gorithm, however, is very similar for the two data structures and
scales well to 16384 cores. While we cannot state with certainty
that ourPCFallows for efficient composition (negligible additional
overhead) for any pair ofpContainers, the obtained results are
promising.

5.4 Generic pAlgorithms

GenericpAlgorithms can operate transparently on different data
structures. We usepViews to abstract the data access and an algo-
rithm can operate on anypContainer provided the correspond-
ingpViews are available. We use thestapl::generate algo-
rithm to produce random values and assign them to the elements in
the container. It is a fully parallel operation with no communication
for accessing the data.stapl::accumulate adds the values of
all elements using a cross location reduction that incurs communi-
cation on the order ofO(log P).

In Figure 8, we show the execution times for thepAlgorithms
on pArray, pList, pGraph, and pMatrix. We performed
a weak scaling experiment using 20M elements per location for
pArray, pList andpMatrix and a torus with a1500 × 1500
stencil per location forpGraph. ThepArray andpMatrix are
efficient static containers for accessing data based on indices and

linear traversals [4, 24]. ForpMatrix the algorithms are applied
to a linearization of the matrix. ThepList is a dynamicpCon-
tainer optimized for fast insert and delete operations at the cost
of a slower access time relative to static data structures such as
pArray. pGraph is a relational data structure consisting of a
collection of vertices and edges. GenericSTL algorithms are used
with pGraph to initialize the data in apGraph or to retrieve val-
ues from vertices or edges. Thestapl::accumulate adds the
values of all the vertex properties.

The algorithms show good scalability as we scale the num-
ber of cores from 4 to 16384. There is less than 5% increase
in execution time forpArray stapl::generate and about
33% for stapl::accumulate due to increased communi-
cation performed in the reduction (O(log P)). All three algo-
rithms on apList with 20M elements per location provide good
scaling. There is less than 6% increase in execution time for
stapl::generate as we scale from 4 to 16384 cores and 26%
for stapl::accumulate. ThepList is generally slower than
the other containers especially when the traversal cost dominates
the computation performed. ThepMatrix [4] considered was of
sizeP × 20M whereP is the number of locations, leading to a
weak scaling experiment where each locations owns a row of size
20M. Similar to thepArray, there is less than 5% increase in
execution time forstapl::generate, and less than 25% for
stapl::accumulate.

This kind of analysis is useful to help users understand the per-
formance benefits of various data structures. From all three plots
we observe that the access time for apList is higher than the ac-
cess time for staticpContainers, and this is due to the different
behavior of theSTL containers used asbContainers. The dif-
ference in performance is less forstapl::generate because it
involves heavier computation (the random number generator).

5.5 pGraph algorithms

In this section, we analyze the performance of severalpGraph
algorithms for various input types andpGraph characteristics.
find edges collects all edges with maximum edge weight into
an outputpList (SSCA2 benchmark);find sources col-
lects all vertices with no incoming edges into an outputpList.
find sources takes as input a collection of vertices and per-
forms graph traversals in parallel. The traversal proceeds in a
depth-first search style. When a remote edge is encountered, a new
task is spawned to continue the traversal on the location owning
the target. The current traversal will continue in parallel with the
spawned one. This is useful, for example, when we want to com-

 0

 2

 4

 6

 8

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Static pGraph Algorithms Weak Scaling
 SSCA2, 500K vertices, 11M edges/location

find edges
find sources

graph traversal from sources
find sources and trim

(a)

 0

 2

 4

 6

 8

 10

 4 8 64 128 1024 4096 24000

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Dynamic pGraph Algorithms Weak Scaling
 SSCA2, 500K vertices, 11M edges/location

find edges
find sources

graph traversal from sources
find sources and trim

(b)

Figure 9. Execution times for differentpGraph algorithms on on CRAY4. Static versus dynamicpGraph comparison. The input is
generated using the SSCA2 scalable generator with 500K vertices per core

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Euler Tour Weak Scaling
 tree: 500k or 1M vertices with 1 or 50 subtrees per proc

euler tour 500K 1
euler tour 500K 50

euler tour 1M 1
euler tour 1M 50

(a) Tree Graph

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 4 8 64 128 1024 4096 16384

E
xe

cu
tio

n
T

im
es

(s
ec

)

Number of Processors

CRAY4: Postorder Numbering Weak Scaling
 tree: 500k or 1M vertices with 1 or 50 subtrees per proc

postorder numbering 500K 1
postorder numbering 500K 50

postorder numbering 1M 1
postorder numbering 1M 50

(b) Postorder Numbering

Figure 10. Execution times for Euler Tour and its post-order numbering applications using a tree made by a single binary tree with 500k or
1M subtrees per core.

pute all vertices and edges accessible from a set of starting points.
trim is another useful computation when computing cycles or
strongly connected components. It computes the set of sources for
a directed graph and removes all their edges, recursively continuing
with the newly created sources. The process will stop when there
are no more sources.

We ran the algorithms on various input types including a torus,
a sparse mesh and SSCA2 random graphs. In Figure 9, weak scal-
ing results are shown for SSCA2 for both static and dynamic
pGraphs. The number of cores is varied from 4 to 24000. For
all algorithms considered, the static graph performed better due to
the faster address resolution andstd::vector storage for ver-
tices versusstd::hash map. find edges, a fully parallel al-
gorithm, exhibits good scalability with less than 5% increase in
execution time for both types of graphs.find sources incurs
communication proportional to the number of remote edges. The
algorithms use two containers, traversing an inputpGraph and
generating an outputpList. The traversal from sources and trim
algorithm spawns new computation asynchronously as it reaches a
remote edge. Additionally thetrim algorithm removespGraph
edges, which negatively impacts performance. The increase in exe-
cution time for the trim algorithm is 28% for static and 25% for dy-
namicpGraphs. Figure 6 illustrates that the execution time of the
pGraph algorithms increases with the number of remote edges.

The Euler Tour (ET) is an important representation of a graph
for parallel processing. Since the ET represents a depth-first-search
traversal, when it is applied to a tree it can be used to compute
a number of tree functions such as rooting a tree, postorder num-
bering, vertex levels, and number of descendants [15]. The paral-
lel ET algorithm [15] tested here uses apGraph to represent the
tree and apList to store the final Euler Tour. In parallel, the al-
gorithm executes traversals on thepGraph pView and generates
Euler Tour segments that are stored in a temporarypList. Then,
the segments are linked together to form the finalpList contain-
ing the Euler Tour. The tree ET applications are computed using a
generic algorithm which first initializes each edge in the tour with
a corresponding weight, and then performs the partial sum algo-
rithm. The partial sum result for each edge is copied back to the
graph, and the final step computes the desired result.

Performance is evaluated by a weak scaling experiment on
CRAY4 using as input a tree distributed across all locations. The
tree is generated by first building a specified number of binary
trees in each location and then linking the roots of these trees in
a binary tree fashion. The number of remote edges is at most six
times the number of subtrees for each location (for each subtree
root, one to its root and two to its children in each location, with
directed edges in both directions). Figure 10(a) and 10(b) show
the execution time on CRAY4 for different sizes of the tree and

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1 2 4 8 16 32 64 128 256 512

S
ca

la
bi

lit
y

(T
1

/ T
P
)

Num Procs

CRAY XT5: MapReduce Strong Scaling
on Simple English Wikipedia website

std hashmap
tbb concurrent hashmap

Figure 11. MapReduce used to count the number of occurrences
of every word in Simple English Wikipedia website (1.5GB).

varying numbers of subtrees. The running time increases with the
number of vertices per location because the number of edges in
the computed ET increases correspondingly. When there are more
subtrees specified in each location, there is more communication
required to link them. Figure 10(b) shows the execution time for
computing the postorder numbering. The running time increases
with the number of vertices per location because the number of
edges increases which are proportional to the computation. When
more subtrees are specified in a location, more segments are formed
in the pList and more communication is needed for the partial
sum.

5.6 MapReduce

Here we examine the performance of a simple application imple-
mented on top of a MapReduce framework developed inSTAPL.
The MapReduce uses thepHashMap, a dynamic associative
pContainer[25]. The application splits the input data across
the available cores and first applies the map and reduce functions
locally. After the local MapReduce phase is finished, the processor
asynchronously inserts its locally reduced data into apHashMap.
The asynchronous insert calls the user’s reduce function if the key
being inserted already exists in thepHashMap. The communica-
tion and data distribution is taken care of entirely by thepCon-
tainer. We ran a computation that computes the multiplicity of
each word in a 1.5GB text input of the Simple-English Wikipedia
website (simple.wikipedia.org). Because the input size was fixed,
we include a strong scaling study where we measure the time taken
to compute the multiplicity for all input words on CRAY5. In
Figure 11 we show experiments corresponding to two different
pHashMap storages, one using theSTL std::hash map and
another using theTBB concurrent hash map. We observe that the
application scales well up to 512 cores without noticeable differ-
ences for different storages. The slowdown on 256 and 512 cores
is due to the small computation performed per core relative to the
communication required to insert the data into thepHashMap.

6. Related Work
There is a large body of work in the area of parallel data structures
with projects aiming at shared memory architectures, distributed
memory architectures or both. Parallel programming languages [5–
7, 29] typically provide built in arrays and provide minimal guid-
ance to the user on how to develop their own specific parallel
data structures.STAPL pContainers are generic data structures
and this characteristic is shared by a number of existing projects
such asPSTL [16], TBB [14], and POOMA [21]. The Parallel Stan-
dard Template Library (PSTL) provides vector, list, queue and as-
sociative containers as self contained implementations and without

emphasizing a common design. Intel Threading Building Blocks
(TBB) provides generic data structures such as vectors, queues and
hash maps adapted for shared memory systems.STAPL is distin-
guished fromTBB in that it targets both shared and distributed
systems and is explicitly designed forextendibility, providing the
user with the means of developing new distributed data structures.
A large number of projects provide individual parallel data struc-
tures such as Parallel Boost Graph Library [10], and Hierarchi-
cally Tiled Arrays [11] and Multiphase Specifically Shared Array
in Charm++[17]. TheSTAPL PCFdiffers from them by providing a
uniform design for all data structures provided.

There has been significant research in the area of concurrent
data structures for shared memory architectures. Most of the related
work [8, 12, 13, 18, 20, 28] is focused either on how to implement
concurrent objects using different locking primitives or how to
implement concurrent lock-free data structures. In contrast, the
STAPL pContainers are designed to be used in both shared
and distributed memory environments and address the additional
complexity required to manage the data distribution. Ideas from
these papers can be integrated in our framework at the level of
bContainers for efficient concurrent access on one location.

The STAPL PCFdiffers from other languages and libraries by
focusing on developing a generic infrastructure that will efficiently
provide a shared memory abstraction forpContainers. The
framework automates, in a very configurable way, aspects relat-
ing to data distribution and thread safety. We emphasize interoper-
ability with other languages and libraries [4], and we use a com-
positional approach where existing data structures (sequential or
concurrent, e.g.,TBB containers) can be used as building blocks for
implementing parallel containers.

7. Conclusion
In this paper, we presented theSTAPL Parallel Container Frame-
work (PCF), an infrastructure to facilitate the development of par-
allel and concurrent data structures. The salient features of this
framework are: (a) a set of classes and rules to build newpCon-
tainers and customize existing ones, (b) mechanisms to generate
wrappers around any sequential or parallel data structure, enabling
its use in a distributed, concurrent environment and in cooperation
with other libraries, and (c) support for the (recursive) composi-
tion of pContainers into nested, hierarchicalpContainers
that can support arbitrary degrees of nested parallelism. Further-
more, we have developed a library of basicpContainers con-
structed using thePCF as initial building blocks and demonstrated
the scalability of its components on very large computer systems.
We have shown how we have implemented ashared object viewof
thepContainers on distributed systems in order to relieve the
programmer from managing and dealing with the distribution ex-
plicitly, unless so desired. ThePCF allows users to customize its
pContainers and adapt to dynamic and irregular environments,
e.g., apContainer can dynamically change its data distribution
or adjust its thread safety policy to optimize the access pattern
of the algorithms accessing the elements. Alternatively, the user
can request certain policies and implementations that can override
the provided defaults or adaptive selections. ThePCF is an open
ended project where users can add features as well as to the library
and thus continuously improve thePCF’s performance and utility.
Our experimental results on a very large parallel machine available
at NERSC show thatpContainers provide good scalability for
both static and dynamicpContainers.

References
[1] D. Bader and K. Madduri. Design and implementation of the hpcs

graph analysis benchmark on symmetric multiprocessors. InThe 12th
Int. Conf. on High Performance Computing, Springer, 2005.

[2] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase, N. Thomas,
X. Xu, M. Bianco, N. M. Amato, and L. Rauchwerger, “The STAPL

pView,” In Int. Workshop on Languages and Compilers for Parallel
Computing, Houston, TX, 2010.

[3] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith,
G. Tanase, N. Thomas, X. Xu, M. Bianco, N. M. Amato and
L. Rauchwerger “STAPL: Standard template adaptive parallel
library,” In Proc. of the 3rd Annual Haifa Experimental Systems
Conf. (SYSTOR), pp. 1–10, 2010.

[4] A. Buss, T. Smith, G. Tanase, N. Thomas, M. Bianco, N. M. Amato,
and L. Rauchwerger, “Design for interoperability in STAPL:
pMatrices and linear algebra algorithms,” InInt. Workshop on
Languages and Compilers for Parallel Computing, in LectureNotes
in Computer Science, vol. 5335, pp. 304–315, July 2008.

[5] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The cascadehigh
productivity language,” InThe Ninth Int. Workshop on High-Level
Parallel Programming Models and Supportive Environments, vol. 26,
pp. 52–60, 2004.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” InProc. of the 20th
annual ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages, and Applications, New York, NY, 2005, pp.
519–538.

[7] D. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,S. Lumetta,
T. Eicken, and K. Yelick, “Parallel programming in Split-C,” In Int.
Conf. on Supercomputing, November 1993.

[8] M. Fomitchev and E. Ruppert, “Lock-free linked lists and skip lists,”
In Proc. Symp. on Princ. of Distributed Programming, New York, NY,
2004, pp. 50–59.

[9] P. Gottschling, D. S. Wise, and M. D. Adams, “Representation-
transparent matrix algorithms with scalable performance,” InProc.
Int. Conf. on Supercomputing, Seattle, Washington, 2007, pp. 116–
125.

[10] D. Gregor and A. Lumsdaine, “The parallel BGL: A generic library
for distributed graph computations,” InProc. of Workshop on Parallel
Object-Oriented Scientific Computing, July 2005.

[11] J Guo, G. Bikshandi, B. B. Fraguela and D. Padua. Writing productive
stencil codes with overlapped tiling.Concurr. Comput. : Pract. Exper.,
21(1):25–39, 2009.

[12] T. L. Harris, “A pragmatic implementation of non-blockinglinked-
lists,” In Proc. Int. Conf. Dist. Comput., London, UK, 2001, pp.
300–314.

[13] M. Herlihy, “A methodology for implementing highly concurrent data
objects,” ACM Trans. Prog. Lang. Sys., vol. 15, no. 5, pp. 745–770,
1993.

[14] Intel. Reference Manual for Intel Threading Building Blocks, version
1.0. Intel Corp., Santa Clara, CA, 2006.

[15] J. J̀aJ̀a, An Introduction Parallel Algorithms. Reading, MA: Addison–
Wesley, 1992.

[16] E. Johnson, “Support for Parallel Generic Programming”.PhD thesis,
Indiana University, Indianapolis, 1998.

[17] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent
object oriented system based on C++,”SIGPLAN Not., vol. 28, no.
10, pp. 91–108, 1993.

[18] M. M. Michael, “High performance dynamic lock-free hash tables and
list-based sets,” InProc. of the Fourteenth Annual ACM Symposium on
Parallel Algorithms and Architectures, Winnipeg, Manitoba, Canada,
2002, pp. 73–82.

[19] D. Musser, G. Derge, and A. Saini,STL Tutorial and Reference Guide,
Second Edition. Reading, MA: Addison–Wesley, 2001.

[20] W. Pugh, “Concurrent maintenance of skip lists,” Univ. of Maryland
at College Park, Tech. Rep., UMIACS-TR-90-80, 1990.

[21] J. W. Reynders, P. J. Hinker, J. C. Cummings, S. R. Atlas, S.Banerjee,
W. F. Humphrey, S. R. Karmesin, K. Keahey, M. Srikant, and M. D.
Tholburn, “POOMA: A framework for scientific simulations of
paralllel architectures,” In Gregory V. Wilson and Paul Lu,editors,
Parallel Programming in C++Cambridge, MA: MIT Press, 1996, pp.
547–588.

[22] S. Saunders and L. Rauchwerger, “ARMI: An adaptive, platform
independent communication library,” InProc. ACM SIGPLAN Symp.
Prin. Prac. Par. Prog., San Diego, California, 2003, pp. 230–241.

[23] G. Tanase, “The STAPL Parallel Container Framework”. PhD thesis,
Texas A&M University, College Station, 2010.

[24] G. Tanase, M. Bianco, N. M. Amato, and L. Rauchwerger, “The
STAPL pArray,” In Proc. of the 2007 Workshop on Memory
Performance (MEDEA), Brasov, Romania, 2007, pp. 73–80.

[25] G. Tanase, C. Raman, M. Bianco, N. M. Amato, and L. Rauchwerger,
“Associative parallel containers in STAPL,” InInt. Workshop on
Languages and Compilers for Parallel Computing, in LectureNotes
in Computer Science, vol. 5234, pp. 156–171, 2008.

[26] G. Tanase, X. Xu, A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce,
T. Smith, N. Thomas, M. Bianco, N. M. Amato, and L. Rauchwerger,
“The STAPL pList,” In Int. Workshop on Languages and Compilers
for Parallel Computing, in Lecture Notes in Computer Science, vol.
5898, pp. 16–30, 2009.

[27] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato,
and L. Rauchwerger, A framework for adaptive algorithm selection in
STAPL. InProc. ACM SIGPLAN Symp. Prin. Prac. Par., pp. 277–288,
Chicago, IL, 2005.

[28] J. D. Valois, “Lock-free linked lists using compare-and-swap,” In
Proc. ACM Symp. on Princ. of Dist. Proc. (PODC), New York, NY,
1995 , pp. 214–222.

[29] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken,
“Titanium: A high-performance Java dialect,” In ACM, editor,ACM
1998 Workshop on Java for High-Performance Network Computing,
New York, NY, 1998.

