The STAPL Parallel Container Framework *

Gabriel Tanase
Timmie Smith

Antal Buss Adam Fidel = Harshvardhan loanmad#poulos
Nathan Thomas Xiabing Xu Nedal Mourad Jeremy Vu
Nancy M. Amato Lawrence Rauchwerger
Parasol Lab, Dept. of Computer Science and Engineering
Texas A&M University, College Station, TX
stapl@cse.tamu.edu

Olga Pearce
uidaianco

Abstract 1. Introduction

The Standard Template Adaptive Parallel LibrasyAPL) is a par- Parallel programming is becoming mainstream due to the increased
allel programming infrastructure that extends C++ with support for availability of multiprocessor and multicore architectures and the
parallelism. It includes a collection of distributed data structures need to solve larger and more complex problems. The Standard
calledpCont ai ner s that are thread-safe, concurrent objects, i.e., Template Adaptive Parallel LibrargtaprL) [3] is being developed
shared objects that provide parallel methods that can be invokedto help programmers address the difficulties of parallel program-

concurrently. In this work, we present tI8TAPL Parallel Con-
tainer Framework gcr), that is designed to facilitate the devel-

ming. STAPL is a parallel C++ library with functionality similar to
STL, the ISO adopted C++ Standard Template Library [$9]. is

opment of generic parallel containers. We introduce a set of con- a collection of basic algorithms, containers and iterators that can

cepts and a methodology for assemblingGont ai ner from ex-

be used as high-level building blocks for sequential applications.

isting sequential or parallel containers, without requiring the pro- Similar tosTL, STAPL provides building blocks for writing parallel
grammer to deal with concurrency or data distribution issues. The programs — a collection of parallel algorithmsA{ gori t hns),
PCFprovides a large number of basic parallel data structures (e.g., parallel and distributed containesQont ai ner s), andpVi ews
pArray,plLi st,pVector,pMatri x,pG aph,pMap, pSet). to abstract data accessesp@ont ai ner s. pAl gori t hns are
The pcF provides a class hierarchy and a composition mecha- represented isTAPL as task graphs callqugRanges. ThesSTAPL
nism that allows users to extend and customize the current con-runtime system includes a communication library (ARMI) and an
tainer base for improved application expressivity and performance. execut or that executepRanges. Sequential libraries such as

We evaluatesTAPL pCont ai ner performance on a CRAY XT4
massively parallel system and show tp&ont ai ner methods,
genericpAl gori t hns, and different applications provide good
scalability on more than 16,000 processors.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming: Parallel Programming

General Terms Languages, Design, Performance

Keywords Parallel, Programming, Languages, Libraries, Data,
Structures

*This research supported in part by NSF awards CRI-05516&%;-C
0833199, CCF-0830753, 11S-096053, 11S-0917266, NSF/DNBEMard
2008-DN-077-ARI1018-02, by the DOE NNSA under the Pred&fcience
Academic Alliances Program by grant DE-FC52-08NA28616, BIETB
NHARP award 000512-0097-2009, by Chevron, IBM, Intel, @g&8un
and by Award KUS-C1-016-04, made by King Abdullah UniversifySci-
ence and Technology (KAUST). This research used resouffcée dNa-
tional Energy Research Scientific Computing Center, whispgported by
the Office of Science of the U.S. Department of Energy undetr@onNo.
DE-AC02-05CH11231. Mourad is a masters student at KAUST witiauad
internship at the Parasol Lab. Tanase is currently a Rds&iadf Member
at IBM T.J. Watson Research Center. Bianco is currently ensist at the
Swiss National Supercomputing Centre.

Permission to make digital or hard copies of all or part of this work for personal
classroom use is granted without fee provided that copies are not made owutkstrib
for profit or commercial advantage and that copies bear this notice and the fubiritati
on the first page. To copy otherwise, to republish, to post on servers or ttritedes

to lists, requires prior specific permission and/or a fee.

PPoPP’11, February 12-16, 2011, San Antonio, Texas, USA.
Copyright© 2011 ACM 978-1-4503-0119-0/11/02. .. $10.00

STL[19], BGL [10], andMTL [9], provide the user with a collection
of data structures that simplifies the application development pro-
cess. SimilarlysTApPL provides the Parallel Container Framework
(PcP which includes a set of elementgyZont ai ner s and tools
to facilitate the customization and specialization of exisp@n-
t ai ner s and the development of new ones.

pCont ai ner s are distributed, thread-safe, concurrent objects,
i.e., shared objects that provide parallel methods that can be in-
voked concurrently. A large number of parallel data structures have
been proposed in the literature. They are often complex, address-
ing issues related to data partitioning, distribution, communication,
synchronization, load balancing, and thread safety. The complex-
ity of building such structures for every parallel program is one
of the main impediments to parallel program development. To al-
leviate this problem we are developing tB&EAPL Parallel Con-
tainer Framework(PCBH. It consists of a collection of elementary
pCont ai ner s and methods to specialize or compose them into
pCont ai ner s of arbitrary complexity. Thus, instead of building
distributed containers from scratch in ad-hocfashion, program-
mers can use inheritance to derive new specialized containers and
composition to generate complex, hierarchical containers that nat-
urally support hierarchical parallelism. Moreover, tierprovides
the mechanisms to enable any container, sequential or parallel, to
be used in a distributed fashion without requiring the programmer
to deal with concurrency issues such as data distribution.

The sTaPL PCcFmakes several novel contributions.

¢ Object oriented design: Provides a set of classes and rules for
using them to build neywCont ai ner s and customize existing
ones.

e Composition: Supports compositionp€ont ai ner s that al-
lows the recursive development of complpont ai ners
that support nested parallelism.

e Interoperability: Provides mechanisms to generate a wrapper
for any data structure, sequential or parallel, enabling it to be
used in a distributed, concurrent environment.

e Library: It provides a library of basipCont ai ner s con-
structed using thecras initial building blocks.

User Application Code

pViews

pContainers

Some important properties pfCont ai ner s supported by the
PCFare noted below.

Shared object view.EachpCont ai ner instance is globally
addressable. This supports ease of use, relieving the programm
from managing and dealing with the distribution explicitly, unless
desired. This is accomplished using a generic software addresg
translation mechanism that uses the same concepts foCalt-

t ai ner s in our framework.

Arbitrary degree and level of parallelism. For pCont ai -
ner s to provide scalable performance on shared and/or distributed
memory systems they must support an arbitrary, tunable degree of
parallelism, e.g., number of threads. Moreover, given the impor-
tance of hierarchical (nested) parallelism for current and foresee-
able architectures, it is important for compogegbnt ai ner s to (rmi f ence) to ensure the completion of all previous RMI calls.
aIIow.concu.rrent access to each level of their hierarchy to better The asynchronous calls can be aggregated by the RTS in an internal
exploit locality. buffer to minimize communication overhead.

Instance-specific customization.The pCont ai ner s in the The RTS provideocationsas an abstraction of processing ele-
PCF can be dynamic and irregular and can adapt (or be adaptedments in a system. focationis a component of a parallel machine
by the user) to their environment. Theer facilitates the design that has a contiguous memory address space and has associated
of pCont ai ner s that support advanced customizations so that execution capabilities (e.g., threads). A location may be identified
they can easily be adapted to different parallel applications or evenwith a process address space. Different locations can communicate
different computation phases of the same application. For example,to each other only through RMIs. InternstaPL mechanisms as-
apCont ai ner can dynamically change its data distribution or sure an automatic translation from one space to another, presenting
adjust its thread safety policy to optimize the access pattern of to the less experienced user a unified data space. For more experi-
the algorithms accessing the elements. Alternatively, the user canenced users, the local/remote distinction of accesses can be exposed
request certain policies and implementations which can override and performance enhanced for a specific application or application
the provided defaults or adaptive selections. domain.sTAPL allows for (recursive) nested parallelism.

Previous STAPL publications present individugbCont ai -
ner s, focusing on their specific interfaces and performance (e.g.
associative containers [25]Li st [26], pAr r ay [24]) or provide
a high level description of theTAPL library as a whole, of which
pCont ai ner s are only one component [3]. This paper presents
for the first time thgoCont ai ner definition and composition for-
malism (Section 3), and theCont ai ner framework (PCF) base
classes from which afpCont ai ner s derive (Section 4).

pRange

Run-time System
Scheduler

Performance
Monitor

ARMI Communication
Library

Adaptive Framework

Executor

Pthreads, OpenMP, MPI, Native, ...

Figure 1. STAPL Overview

"3. The STAPL Parallel Container

Data structures are essential building blocks of any generic pro-
gramming library. Sequential libraries suchsag [19], BGL [10],
andmTL [9], provide data structures such as arrays, vectors, lists,
maps, matrices, and graphs. A parallel container is an object ori-
ented implementation of a data structure designed to be used effi-
ciently in a parallel environment. Design requirements ofstherL
pCont ai ner are listed below.

Scalable performancepCont ai ner s must provide scalable
performance on both shared and distributed memory systems. The
performance of th¢Cont ai ner methods must achieve the best
known parallel complexity. This is obtained by efficient algorithms
coupled with non-replicated, distributed data structures that allow
a degree of concurrent access proportional to the degree ofdiesire
parallelism, e.g., the number of threads.

Thread safety and memory consistency modeWhen needed,

2. STAPL Overview

STAPL [2, 3, 22, 27] is a framework for parallel C++ code devel-
opment (Fig. 1). Its core is a library of C++ components imple-
menting parallel algorithm$@ gor i t hns) and distributed data
structuresfCont ai ner s) that have interfaces similar to the (se-
quential) C++ standard librarysfL) [19]. Analogous tosTL al-
gorithms that uséterators STAPL pAl gori t hns are written in
terms ofpVi ews [2] so that the same algorithm can operate on
multiplepCont ai ners. the pCont ai ner must be able to provide thread safe behavior
pAl gori t hirs are represented ImRanges. Briefly, apRange and respect a memory consistency model. Currently, we support a
is a task graph whose vertices are tasks and whose edges representlaxed consistency model. Due to space constraints, these issues

dependencies, if any, between tasks. A task includes Wotli
(represented byvorkfunction$ and data (from pCont ai ner s,
generically accessed througlvi ews). Theexecut or, itself a

are not addressed further in this paper; see [23] for detalils.
Shared object view.EachpCont ai ner instance is globally
addressable, i.e., it provides a shared memory address spage. Th

distributed shared object, is responsible for the parallel execution supports ease of programming, allowing programmers to ignore the

of computations represented pRanges. Nested parallelism can
be created by invoking pAl gor i t hmfrom within a task.

The runtime system (RTS) and its communication library
ARMI (Adaptive Remote Method Invocation) provide the inter-

distributed aspects of the container if they so desire.
Composition. The capability to composeCont ai ner s (i.e.,

pCont ai ner s of pCont ai ner s) provides a natural way to ex-

press and exploit nested parallelism while preserving locality. This

face to the underlying operating system, native communication feature is not supported by other general purpose parallel libraries.
library and hardware architecture [22]. ARMI uses the remote Adaptivity. A design requirement of theTAPL pCont ai ner
method invocation (RMI) communication abstraction to hide the is that it can easily be adapted to the data, the computation, and
lower level implementations (e.g., MPIl, OpenMP, etc.). A remote the system. For example, different storage options can be used for
method invocation irs TAPL can be blockinggync_r ni) or non- dense or sparse matrices or graphs or the data distribution may be
blocking @sync_rm). ARMI provides the fence mechanism modified during program execution if access patterns change.

3.1 pCont ai ner definition ing the elements of the nest@d\r r ays is done naturally using

A sTAPL pContaineris a distributed data structure that holds a fi- a concatenation of the methods of_the outer and AT By S.
nite collection of typed elemengs each with a unique globaliden- TOf €X@mpIepApA. get el ement (i) . get el enent (j) re-
tifier (GID), their associated storage and an interfac® (meth- tums a reference to thgth element belonging to theth nested
ods or operations) that can be applied to the collection. The inter- PAT T @Y. Moreover, data stored in a composed data structure can

face © specifies an Abstract Data Type (ADT), and typically in- P€ efficl:iently exp:!oitetcki] by nesteplAl Igori tthrFS' 'nhth? ?HADA ed
cludes methods to read, write, insert or delete elements and meth-SXa@MP'€, compulng the minimum element of each or the neste

ods that are specific to the individual container (es@), i ce for pPArrays can be done using a paraliebral | on the outer
apLi st orout _degr ee for apG aph vertex). PArray, and within each nested one, a reduction to compute the
ThepCont ai ner also includes meta information supporting m'r:'mtlr’]m value. der of thi i tormalize hEont ai
data distribution: alomainD, that is the union of the GIDs of the n the remainder of this section we formalize th€ont ai -
container's elements, and a mappifigfrom the container's do- ~ N€r composition definition. Thaeightof apCont ai ner is the
mainD to the elements idl. To support parallel use in a distributed ~ 9€Pt ﬁf :h%cclmpgsmpon,}l_.ebth%numt()jercs)f Eeslé@bgt 5}7'__'
setting, the collectio and the domairD are partitioned in a man- noerg. g p Clo_t (C1, D, flﬁ '17htl§) and% 2 = (2t7. 2|7 T2H
ner that is aligned with the storage of the container’s elements. 2, 52) bepCont ai ner s of height!f; and />, respectively. The
Thus, apCont ai ner is defined as: composegCont ai ner pC = pC1 opCsis of helghtH1 + Ho.
' In pC, each element 0pC1[i], ¢ € Dy, is an instance opCs,

def calledpCs; = (Cas, D2i, Fai, O2i, S2i). Each component gfC' is
Cc = (C,D,F,0O,S8 1 edpl2 2i5 D2iy F2i, U2, O2 .
P _() _ @) derived appropriately from the corresponding componengsgf
The tuple(C, D, F,O) is known as thenative pViewof the andpC>. For example, in the special case when all the mapping

pCont ai ner. As described in [2]STAPL pVi ews generalize functionsF»; and operation€)-; are the same, we have
the iterator concept and enable parallelism by providing random
access to collection_s of their elements.p¥i ews, the partition D = U ({D1[i]} x D2:)
of D can be dynamically controlled and depends on the needs of ieDy
the algorithm (e.g., a column-based partition @fat ri x for an F o= (F T
algorithm that processes the matrix by columns) and the desired = (F1,72)
degree of parallelism (e.g., one partition for each processor). The O = (01,09)
nativepVi ewassociated with pCont ai ner is a special view in
which the partitioned domai® is aligned with the distribution of ~ Where 7 (z,y) = (F1,72)(z,y) = (Fi(2), F2(y)), (z,y) €
the container’s data. Performance is enhanced for algorithms thatD- The componentg’ and S are isomorphic toD and defined
can use nativeVi ews. similarly to it. With this formalism, arbitrarily deep hierarchies can
A pCont ai ner stores its elements in a non-replicated fash- Pe defined by recursively composipgont ai ner s.
ion in a distributed collection dfase containergoCont ai ner s), Given a composefiCont ai ner PC' = (C, D, F,0,S), of
each having a corresponding natip®i ew. pCont ai ner s can height 1, the GID of an element at level < H is a tuple
be constructed from any base container, sequential or parallel, so(Z1; - - -»Zn). Similarly, the mapping function to accesp@on-
long as it can support the required interface. Pi@nt ai ner s t_al ner a}llevelh is a subsequence (prefix) of the tuple of func-
currently provided irs TAPL use the correspondirgrL containers ~ HONSF, F'(z1,...,xn) = (F1(21), Fa(22), ..., Fr(2r)). The
(e.g., thesTAPL pVect or uses thesTL vector), containers from operations available at levelare0, . To invoke a method at level
other sequential libraries (e.guTL [9] for matrices), containers /. the appropriate element of the GID tuple has to be passed to each

available in libraries developed for multicore (e.g8B [14] con- method invoked in the hierarchy, as shown in the example given at
current containers), or othpCont ai ner s. This flexibility allows the beginning of this section.])
for code reuse and supports interoperability with other libraries. pCont ai ner composition is made without loss of informa-

The pCont ai ner provides a shared Object view that enables ti(_)n, pre_serving the meta informatior! ofits Cc_)mponents in the same
programmers to ignore the distributed aspects of the container if hierarchical manner. For example, if two distributeGont ai -
they so desire. As described in more detail in Section 4.3, when Ner s are composed, then the distribution information of the ini-
a hardware mechanism is not available, the shared object viewtial pCont ai ners will be preserved in the nepCont ai ner.
is provided by a software address resolution mechanism that firstA feature of our composition operation is that it allows for (static)
identifies thebCont ai ner containing the required element and SPecialization if machine mapping information is provided. For ex-
then invokes théCont ai ner methods in an appropriate manner ample, if the lower (bottom) level of the composedont ai ner

to perform the desired operation. is distributed across a single shared memory node, then its mapping
F can be specialized for this environment, e.g., some methods may
3.2 pCont ai ner composability turn into empty function calls.

There are many common data structures that are naturally described

as compositions of existing structures. For examplpVact or .

of pLi spt s provides a nat%ral adjacency list repPer)entation of a 4. The Parallel Container Framework (PCF)

graph. To enable the construction and use of such data structuresAn objective of thesTaAPL Parallel Container Framework (PCF)

we require that the composition pfCont ai ner s be apCon- is to simplify the process of developing generic parallel contain-

t ai ner, i.e., thatpCont ai ner s are closed under composition. ers. It is a collection of classes that can be used to construct new
An important feature of composexCont ai ner s is that they pCont ai ner s through inheritance and specialization that are cus-

support hierarchical parallelism in a natural way — each level of tomized for the programmer’s needs while preserving the proper-

the nested parallel constructs can work on a corresponding levelties of the base container. In particular, HeFcan generate a wrap-

of the pCont ai ner hierarchy. If well matched by the machine per for any standard data structure, sequential or parallel, that has

hierarchy, this can preserve existing locality and improve scalabil- the meta information necessary to use the data structure in a dis-

ity. Consider the example of@Ar r ay of pArr ays. This can be tributed, concurrent environment. This allows the programmer to

declared irsTAPL using the following syntax: concentrate on the semantics of the container instead of its con-
p-array<p.array<int >> pApA(10); currency and distribution management. Thus, plag makes de-

Such a composed data structure can distribute both the top level and/eloping apCont ai ner almost as easy as developing its sequen-

the neste@Ar r ays in various ways across the machine. Access- tial counterpart. Moreover, thecr facilitates interoperability by

Base pContainer

Dynamic
pContainer

Associative pContainers Relationship pContainers

Indexed Associative Relational Sequence

[/ bcontai ner definition:
//sequential graph using vector storage

1. typedef pg_base_contai ner<vector,..> bpg_s;
/land a static partition

2: typedef pg_static<bpg_s,..> partition_s;

/ /I sequential graph using std::map storage
3: typedef pg_base_container<nap,..> bpg_d;
/land a dynam c partition

<Value>

I

! |Index is the implicit
1| key

<Key,Value>
Simple Associative

<key=value>
Pair Associative

<Element,Relation> <Value>

I
User Specific ||
Container

Extensions

4: typedef pg_fwd<bpg_d,..> partition_d;

//pgraph with static partition

<key, value>

pArray pMatrix pVector

pMap, pSet pGraph

@

5: p_graph<Dl RECTED, MLLTI, partition_s> pg_s(N);
/I pgraph with dynanmi c storage and

// met hod forwarding
6: p_graph<Dl RECTED, MULTI, partition_d> pg_d(N);

(b)

Figure 2. (a) pcFrdesign. (bpCont ai ner customization.

enabling the use of parallel or sequential containers from other li- an existingpGr aph implementation. Users can select the storage

braries, e.g.mTL [9], BGL [10] or TBB [14].

STAPL provides a library ofpCont ai ner s constructed us-
ing the PCF. These include counterparts sffL containers (e.g.,
pVect or, pLi st [26], and associative containers [25] such as
pSet , pMap, pHashMap, pMul ti Set, pMul ti Map) and addi-
tional containers such géAr r ay [24], pMat ri x, andpGr aph.

by providing the type of an existingCont ai ner and similarly
for the partition. Figure 2(b), line 5, shows the declaration of a di-
rectedpG aph allowing multiple edges between the same source
and target vertices and using a static partition. With a static par-
tition, users need to declare the size of gt@& aph at construc-
tion time and subsequent invocations of #ud_ver t ex method

Novice programmers can immediately use the available data will trigger an assertion. Figure 2(b), line 6, shows the declaration

structures with their default settings. More sophisticated paral- of a pG-aph using a dynamic partition that allows for addition
lel programmers can customize or extend the default behavior to and deletion of both vertices and edges. More details and perfor-
further improve the performance of their applications. If desired, mance results regarding the benefits of having different partitions
this customization can be modified by the programmer for every and types of storage are discussed in Section 5.2.
pCont ai ner instance. i

4.2 pCont ai ner Interfaces
4.1 pContainer Framework design For each concept in thecF (Figure 2(a)) there is a correspond-
The pPcF is designed to allow users to easily bujdCont ai - ing interface consisting of various constructors and methods as
ner s by inheriting from appropriate modules. It includes a set of described in [23].pCont ai ner methods can be grouped in
base classes representing common data structure features and rulébree categories: synchronous, asynchronous and split phase. Sy
for how to use them to buil@Cont ai ner s. Figure 2(a) shows chronous methods have a return type and guarantee that the method
the main concepts and the derivation relations between them; alsois executed and the result available when they return. Asynchronous

shown are thesTAPL pCont ai ner s that are defined using those
concepts. AllsTAPL pCont ai ner s are derived from thpCon-

methods have no return value and return immediately to the calling
thread. Split phase execution is similar to that in Charm++ [17].

t ai ner base class which is in charge of storing the data and The return type of a split phase method is a future that allocates

distribution information. The remaining classes in ther pro-

space for the result. The invocation returns immediately to the user

vide minimal interfaces and specify different requirements about and the result can be retrieved by invoking tet method on the

bCont ai ners. First, thest ati ¢ anddynam ¢ pCont ai -

future which will return immediately if the result is available or

ner s are classes that indicate if elements can be added to or re-block until the result arrives. Performance trade-offs betweemthes

moved from thepCont ai ner. The next discrimination is be-

three categories of methods are discussed in Section 5.5.

tween associativeand relational pCont ai ner s. In associative . S)
containers, there is an implicit or explicit association between a key 4-3 Shared Object View implementation

and a value. For example, in an array there is an implicit associa- Recall that the elements of @Cont ai ner are stored in non-
tion between the index and the element corresponding to that index;replicated fashion in a distributed collectiont®ont ai ner s. An

we refer to such (multi-dimensional) arrays as indep€dnt ai - important function of thercFis to provide a shared object view
ner s. In other cases, such as a hashmap, keys must be stored exhat relieves the programmer from managing and dealing with the
plicitly. The PCFprovides amassoci ati ve base pCont ai - distribution explicitly, unless he desires to do so. In this section, we
ner for such cases. Theel ati onal pCont ai ners include describe how this is done. Its performance is studied in Section 5.2.
data structures that can be expressed as a collection of elements The fundamental concept required to provide a shared object
and relations between them. This includes graphs and trees, whereview is that eactpCont ai ner element has a unique global iden-
the relations are explicit and may have values associated with themtifier (3 D). Thed D provides the shared object abstraction since
(e.g., weights on the edges of a graph), and lists where the relationsall references to a given element will use the sa&h®. Exam-

between elements are implicit.
All classes of theecFhave default implementations that can be
customized for eacpCont ai ner instance using template argu-

ments calledraits. This allows users to specialize various aspects,

e.g., thebCont ai ner or the data distribution, to improve the per-

ples of@ Ds are indices fopAr r ays, keys forpMaps, and vertex
identifiers forpGr aphs.

The PCF supports the shared object view by providing an ad-
dress translation mechanism that determines where an element with
a particulai@ Dis stored (or should be stored if it does not already

formance of their data structures. In Figure 2(b) we show an ex- exist). We now briefly review thecrcomponents involved in this
ample ofsTAPL pseudocode illustrating how users can customize address translation. As defined in Section 3.1, the sé&t 85 of a

pCont ai ner is called adomainD. For example, the domain ofa then the address resolution process may add significantly to the crit-
pArray is a finite set of indices while it is a set of keys for an as- ical path of the method’s execution. To alleviate this problem, we
sociativepCont ai ner . A pCont ai ner’s domain is partitioned combine the address resolution and the method execution into one

into a set of non-intersectirgub-domaindy aparti ti on class, operation. This mechanism, referred torasthod forwardingal-

itself a distributed object that provides the mapfrom a GID to lows the method to be forwarded along with the address resolution
the sub-domain that contains it, i.e., a directory. There is a one-to- process instead of first fetching the address from a remote location
one correspondence between a sub-domain alp@oat ai ner and then instantiating the remote method invocation.

and in general, there can be multifd€ont ai ner s allocated in As will be shown in Section 5.2, a partition using forwarding
alocation Finally, a class called partiti on- mapper maps provides improved performance over a directory that determines
a sub-domain (and its correspondib@ont ai ner) to the loca- thed D's location using synchronous communication.

tion where it resides, and laocat i on- manager manages the
bCont ai ner s of apCont ai ner mapped to a given location. 5. pCont ai ner Performance Evaluation
GD In this section, we evaluate the performance of representative
pCont ai ner s developed using tieck, pAr r ay, pLi st ,pMat -

ri x, pG aph, pHashMap and composegCont ai ners. In
Section 5.1, we study the scalability of parallel methods for
pArray, pG aph andpLi st . We examine trade-offs for various
address resolution mechanisms in Section 5.2 ang@omnt ai -

ner composition in Section 5.3. Sections 5.4, 5.5, and 5.6 analyze
generic parallel algorithms, graph algorithms, and a MapReduce
application, respectively.

With the exception of MapReduce, we conducted all our ex-
tonpatationto Lip 4 (BAD, LID) perimental studies on a 38,288 core Cray XT4 (CRAY4) available
at NERSC. There are 9,572 compute nodes each with a quad core
Opteron running at 2.3 GHz and a total of 8 GB of memory (2 GB

conputationto LOC

transfer

of memory per core). The MapReduce study was performed on a
pry—— Cray XT5 (CRAY5) with 664 compute nodes, each containing two
reference 2.4 GHz AMD Opteron quad-core processors (5,312 total comes). |

Figure 3. pCont ai ner modules for performing address resolu- all experiments, a location contains a single processor core, and the
tion to find the element reference corresponding to a gt terms can be used interchangeably.

All the experiments in this paper, with the exception of MapRe-
Figure 3 describes the address resolution procedure. Given theduce, show standard weak scaling where the work per processor is

uniqued Didentifying apCont ai ner element, theartiti on kept constant. As we increase the number of cores the amount of
class is queried about the sub-dombidnt ai ner associated work increases proportionally and the baseline for each experiment
with the requested D. If the bCont ai ner information (speci- is the time on four cores which is the number of cores in a compute
fied by abCont ai ner identifier, orBCl D) is not available, the node on CRAY4. Confidence intervals are included in the plots.

parti ti on provides information about the location@C) where The machines used are very stable though and the variations for

thebCont ai ner information might be retrieved, and the process each experiment are small, so the confidence intervals are often not
is restarted on that location. If t/R€l Dis available and valid, then visible in the plots.

thepartiti on- mapper returns information about the location

where thebCont ai ner resides (| D). 5.1 pContainer Methods

For staticpCont ai ners, i.e., containers that do not support The performance of variousTAPL pCont ai ner s has been stud-
the addition and deletion of elements, the domain does not changejgq in [4, 24-26]. In this section, we examine the performance

during execution. In this case, it is possible to optimize the address of novel pCont ai ner methods in the context of theAr r ay,
translation mechanism by employing a static partition that com- pLi st andpG aph data structures.

putes the mapping from@ Dto abCont ai ner and a location in To evaluate the scalability of theCont ai ner methods we
constant time by evaluating an expression or doing a table lookup. gesigned a simple kernel in which @t available cores (locations)
For example, ®@Ar r ay with N elements can map the indéxo concurrently performV/ P invocations, for a given number of el-

the locationi% P, whereP is the number of available locations. Or, ementsV. We report the time taken to perform all operations
forapG aph where the number of vertices is fixed at construction, gopally. The measured time includes the cost of a fence to en-
we can use a static partition that computes a vertex location in con-gyre the methods are globally finished. In Figure 4(a) we show
stant time using a hash table. the performance fquAr r ay set el ement , get _el enent and
Dynamic pCont ai ners, where elements can be added or gp|jt get el enent . We performed a weak scaling study with
deleted, need to employ dynamic partitions. Currently, we pro- 20\ elements and 20M method invocations per location. In this
vide a dynamic partition implemented as a distributed directory. eyperiment there are 1% remote accesses. We observe good scala-
The directory statically associates a home for an individdaD bility for the asynchronous invocations with only 5.8% increase in
that always knows the location where the resped@®is stored. eyecution time as we scale the number of cores from 4 to 16384.
If the element happens to migrate to a new location the home needsgor the synchronous methods, the execution time increases 237%
to be updated with information about the new location. With this rejative to 4 cores and 29% relative to 8 cores. The big increase
directory implementation, accessing an element corresponding t0 ajy execution time from 4 to 8 is due to the inter-node communi-
givenG Dinvolves two steps. First, find and query the home where cation which negatively affects performance, especially for syn-
the element lives and second, access the element on its location. - chronous communication. For te@l i t _get _el enent we per-
. formed two experiments where we invoke groups of 1000 or 5000
4.4 Method Forwarding split phase operations before waiting for them to complete. The
For apCont ai ner to operate on a non-local element, it must de- split phase methods have an inherent overhead for allocating the
termine the element’s location and invoke the method at that loca- futures on the heap, but they do enable improved performance and
tion. Hence, if the element’s address cannot be determined locally, scalability relative to the synchronous methods. Split phase execu-

CRAY4: pArray Methods Weak Scaling CRAY4:pList Insert and Insert Async Weak Scaling

20M elements per location 1% and 2% remote operations per location
20 ‘ ‘ 9 : ‘ :
< set element —— S 8 pListinsert 1% ——
o get element - o pList insert async 1% -
% 15 split phase get element 1K - bl 7 pListinsert 2% ---#&--
g split phase get element 5K ---@- - GE) 6 pList insert async 2% ---@--
= = 5 I
= B . = 1 [e m--u
- 10 v % S - 2 mom =
2 X o m : g 3
§ 5 e | e { B B B L § 5
5 4 — P — EARR L S5 SNBSS SR 0. . .
0 : — : : : 0 : — : .
4 8 64128 1024 4096 16384 4 8 64128 1024 4096 16384
Number of Processors Number of Processors
(a) pArray (b) pLi st

Figure 4. CRAY4: (a)pArr ay methodsset _el ement, get _el ement and split phasget _el ement . 20M method invocations per
location with 1% remote (b) 5NbLi st method invocations with 1% and 2% remote. The number of remote asdesse®ariable that we
can control as part of our experimental setup.

CRAY4: Static pGraph Methods Weak Scaling CRAY4: Dynamic pGraph Methods Weak Scaling
SSCA#2, 500K vertices, 11M edges/location SSCA#2, 500K vertices, 11M edges/location
T 100 add vertex —— 5 100 | ‘ add vertex ——
o add edge % 2 add edge
e find vertex ---m-- 5 find vertex ---#--
g 10 find edge @ g 10 | find edge ---®--
= e b0 R 0. . = .
c 1 c
i) o
5 5
g 01)
> >
i i
0.01 :
4 8 64128 1024 4096 16384 4 8 64128 1024 4096 16384
Number of Processors Number of Processors
(a) StaticpGr aph (b) DynamicpGr aph

Figure 5. Evaluation of static and dynammGr aph methods while using the SSCA2 graph generator; 500k vertices, 11dg¥se-40
remote edges per location23 edges per vertex (a) For the stati@ aph all vertices are built in the constructor; (b) The dynam@® aph
inserts vertices usingdd_ver t ex method.

tion enables the aggregation of the requests by the runtime systemallocates all its vertices in the constructor and subsequently only
as well as allowing communication and computation overlap. For edges can be added or deleted. It uses a static partition that is im-
the spl it _get _el enent the overall execution time increases plemented as an expression and hasCant ai ner that uses
4.5% as we scale the number of cores from 4 to 16384, when 5000a st d: : vect or to store the vertices, each of which uses a

invocations are started before waiting the result. std::list to store edges. The dynamaG aph uses a dis-
In Figure 4(b), we show a weak scaling experiment @ih.ast tributed directory to implement its partition and B€ont ai ner
using 5 million elements per core and up to 16384 cores (81.9 usesst d: : hash_map for vertices andst d: : | i st for edges.

billion total method invocations performed). The synchronous We chose thest d: : hash_map in the dynamic case because it
i nsert adds an element at a given position and returns a ref- allows for fast insert and find operations. As shown in Figure 2(a),
erence to the newly inserted element. Tmser t _async inserts the static or dynamic behavior is achieved by passing the corre-
the element asynchronously and has no return value. In this experi-sponding template arguments to fhér aph class.
ment, the majority of the invocations are executed locally with 1% We performed a weak scaling experiment on CRAY4 using a
and 2%, respectively, being executed remotely. We observe good2D torus where each core holds a stencil of 160800 vertices
scalability of the two methods up to 16384 cores. The asynchronousand corresponding edges, and a random graph as specified in the
versions of thgoCont ai ner methods are faster as they can over- SSCA2 benchmark [1]. SSCA2 generates a set of clusters where
lap communication with computation and don’t return information each cluster is densely connected and the inter cluster edges are
about the position where the element was added. sparse. We use the following parameters for SSCAZ2: cluster size =
The pGraph is a relational data structure consisting of a (V/P)1/4, whereV is the number of vertices of the graph, max-
collection of vertices and edges. Thea aph is represented imum number of parallel edges is 3, maximum edge weigh,is
as an adjacency list and depending on its properties, different probability of intra clique edges is 0.5 and probability of an edge
bCont ai ners can be used to optimize the data access. Here, to be unidirectional 0.3. Figure 5 shows the execution time for
we evaluate a static and a dynarpi aph. The staticoGr aph add_vert ex,add_edge, fi nd_vert ex andf i nd_edges for

mp=128 Method Forwarding Method Forwarding for P=1024
1000 7 BP=512 1000 — ‘
Bp=1024 . static —+—
B 8 fwd s o
. q : @ {
L SP=4096 N
2100 T~ gp. &2 100 | nofwd -3 s
g P=8192 - @ K
E OP=16384 i £
g 10
3 10 §§ c
¢ 2
& HA 5
o 1
A Q
] H4 X
1 i
static fwd nofwd static fwd nofwd static fwd nofwd static fwd nofwd 0.1
0, 0y 0, 0 0 0y 0, 0y 0, 0, 0y 0, N
0'3.3 /00.31? /00.33' % 3{4 % 34'4 % 341,1 % 2\5 % 25' %o 25‘A) 5‘0 % 5('J % 50’ % 0.03 0.33 3.4 25 50
0.1
Partition / Percentage of Cut Edges Percentage of Remote Edges
(a) (b)

Figure 6. Find sources in a directq@isar aph using static, dynamic with forwarding and dynamic with no forwarding panitidxecution
times for graphs with various percentages of remote edges for (@usarore counts and for (b) 1024 cores.

CRAY4: Composed pArray versus pMatrix CRAY4: Composed pArray versus pMatrix
Px100M elements 100Px1M elements
35 — ; ; 3.5 — ; ;
= allo and fill pa<pa> —+— = alloc and fill pa<pa> —+—
o 3r alloc and fill pMatrix <] 2 37 alloc and fill pMatrix -3¢]
% 25| min rows pa<pa> % | % 25| min rows pa<pa> ¥ |
g '2 min row pMatrix -t g '2 min rows pMatrix - |
£ — — : s £ S S S e
e VN VIR o T
X % S A
.5 15t 1 .5 1.5 + 1
3 1T 1 3 1T 1
£ 05 : £ 05
(i R =] Eﬁ i B - <X ~»%~~%»-~%~§f
0 1 1 1 1 1 1 | O 1 1 1 1 1 1 |
4 8 64128 1024 4096 16384 4 8 64128 1024 4096 16384
Number of Processors Number of Processors
() P x 100M Matrix (b) 100 - P x 1M Matrix

Figure 7. Comparison opar r ay<par r ay<>> (pa < pa >) andpMat r i X on computing the minimum value for each row of a matrix.
Weak scaling experiment with (&) x 100M and (b)100 - P x 1M elementspar r ay<par r ay<>> takes longer to initialize while the
algorithm executions are very similar.

the SSCA2 input. For the dynammG aph the container is ini- target vertex of each edge. The communication incurred by this
tially empty and vertices are added usiadd_vert ex. As seen algorithm depends on the number of remote edges, i.e., edges con-
in the plots, the methods scale well up to 16384 cores. The addition necting vertices in two differerthCont ai ner s. We considered

of edges is a fully asynchronous parallel operation. Adding vertices four graphs, all 2D tori, which vary according to the percentage
in the dynamicpG- aph causes additional asynchronous commu- of remote edges: .33%, 3.4%, 25% and 50%. This was achieved
nication to update the directory information about where vertices by having each core hold a stencil of 505,000, 15150,000,

are stored. The asynchronous communication overlaps well with 2x 1,125,000 and 2,250,000, respectively.

the local computation of adding the vertices in t@ont ai ner, Figure 6(a) provides a summary of the execution times for
thus providing good scalability up to a very large number of cores. the different percentages of remote edges and different numbers
The execution time increases 2.96 times for éliel vert ex in of cores, where scalability can be appreciated together with the

the dynami@ G aph as we scale from 4 to 16384 cores. The mesh increasing benefit of forwarding as the percentage of remote edges
results are not included due to space limitations but they exhibit increases. In Figure 6(b) we include results for the three approaches
similar trends as the SSCA2 results. on all four types of graphs for 1024 cores. As can be seen, for
the methods with no forwarding and synchronous communication,
the execution time increases as the percentage of remote edges
increases. The static method and the method with forwarding track
In this section, we evaluate the performance of the three typesone another and do not suffer as badly as the percentage of remote
of address translation mechanisms introduced in Section 4.3: aedges increases. This indicates that the forwarding approach can
static partition mappings Ds tobCont ai ner s, and distributed scale similarly to the optimized static partition.
dynamic partitions with and without method forwarding.

We evaluate the performance of the three partitions using a sim- . -,)
ple pGr aph algorithm that finds source vertices (i.e., vertices with -3 PContai ner composition evaluation
no incoming edges) in a directed graph. The algorithm traverses So far we have made a case for the necessitp@int ai ner
the adjacency list of each vertex and increments a counter on thecomposition to increase programmer productivity. Instead of di-

5.2 Evaluation of address translation mechanisms

CRAY4: Generate Weak Scaling

12 ‘ ‘ ‘
— pArray —+—
3 1t pList x|
2 pMatrix & |
& 0.8 X e o I
E —u T I FOS
= 0.6]
c
2
5 047]
3
5027 |
0 : b \ ‘ ‘
4 8 64128 1024 4096 16384

Number of Processors
(@)stapl :: generate

CRAY4: Accumulate Weak Scaling

— pArray ——+—

8 pList - |

9 pMatrix -

é dynamic pGraph ---@--- |

=

c

o

= |

i oo o 0o 8
--u o e
64128 1024 4096 16384

Number of Processors
(b)stapl :: accunul ate

Figure 8. Execution times forst apl : : gener at e andst apl : : accunul at e algorithms on CRAY4. Same algorithm applied to
different data structures. Th®Ar r ay, pLi st andpMat ri x are with 20M elements per location. The infu@ aph has a 1500x1500

mesh per location.

rectly building a complexpCont ai ner, the programmer can
compose one from the bagixCont ai ner s available in theecF

linear traversals [4, 24]. FggMat r i x the algorithms are applied
to a linearization of the matrix. TheLi st is a dynamigpCon-

and shorten development and debugging time. The issue we studyt ai ner optimized for fast insert and delete operations at the cost

here is the impact of composition on performance.
For this comparative performance evaluation we compute the
minimum element in each row of a matrix using both piét -
ri x pCont ai ner (which is available in thercr library) and
the composegAr r ay of pArrays. The algorithm code is the

of a slower access time relative to static data structures such as
pArray. pG aph is a relational data structure consisting of a
collection of vertices and edges. Genesit. algorithms are used
with pGr aph to initialize the data in @G aph or to retrieve val-

ues from vertices or edges. Theapl : : accurul at e adds the

same for the two cases, due to the access abstraction mechanisnalues of all the vertex properties.

provided bysTAPL. It calls a parallelf or al | across the rows,
and within each row, a reduction to compute the minimum value.

The algorithms show good scalability as we scale the num-
ber of cores from 4 to 16384. There is less than 5% increase

We also measure the time to create and initialize the storage. Thein execution time forpArray st apl : : gener at e and about

pMat ri x allocates the entire structure in a single step, while the
pArray of pArrays allocates the outer structure first and then
allocates the singlpArray elements individually. In Figure 7
we include, for CRAY4, the execution times for allocating and
initializing the two data structures and the times to run the min-
of-each-row algorithm, in a weak scaling experiment. Figure 7(a)
shows the case of B x 100M element matrix P is the number of
cores), while Figure 7(b) shows the case @ba- P x 1M element
matrix. The aggregated input sizes are overall the same.

As expected, th@Array of pArrays initialization time is
higher than that for @Mat ri x. The time for executing the al-
gorithm, however, is very similar for the two data structures and
scales well to 16384 cores. While we cannot state with certainty
that ourpcrallows for efficient composition (negligible additional
overhead) for any pair giCont ai ner s, the obtained results are
promising.

5.4 Generic pAlgorithms

GenerigpAl gor i t hns can operate transparently on different data
structures. We usgVi ews to abstract the data access and an algo-
rithm can operate on argCont ai ner provided the correspond-
ingpVi ews are available. We use tisd apl : : gener at e algo-

33% for stapl ::accumul at e due to increased communi-
cation performed in the reductiorO(log P)). All three algo-
rithms on apLi st with 20M elements per location provide good
scaling. There is less than 6% increase in execution time for
st apl : : gener at e as we scale from 4 to 16384 cores and 26%
forstapl : : accunul at e. ThepLi st is generally slower than
the other containers especially when the traversal cost dominates
the computation performed. Thpvat ri x [4] considered was of
size P x 20M where P is the number of locations, leading to a
weak scaling experiment where each locations owns a row of size
20M. Similar to thepArr ay, there is less than 5% increase in
execution time forst apl : : gener at e, and less than 25% for
stapl ::accunul at e.

This kind of analysis is useful to help users understand the per-
formance benefits of various data structures. From all three plots
we observe that the access time fgrld st is higher than the ac-
cess time for statipCont ai ner s, and this is due to the different
behavior of thesTL containers used dsCont ai ner s. The dif-
ference in performance is less f®rapl : : gener at e because it
involves heavier computation (the random number generator).

5.5 pG aph algorithms

rithm to produce random values and assign them to the elements inin this section, we analyze the performance of sevpfalaph

the container. Itis a fully parallel operation with no communication
for accessing the datat apl : : accunul at e adds the values of

all elements using a cross location reduction that incurs communi-

cation on the order oD (log P).

In Figure 8, we show the execution times for gfd gori t hns
on pArray, pLi st, pG aph, andpMatri x. We performed
a weak scaling experiment using 20M elements per location for
pArray, pLi st andpMat ri x and a torus with 4500 x 1500
stencil per location fopG- aph. ThepArray andpMat ri x are

algorithms for various input types armuGr aph characteristics.

fi nd_edges collects all edges with maximum edge weight into

an outputplLi st (SSCA2 benchmark)f i nd_sour ces col-

lects all vertices with no incoming edges into an outplt st .

fi nd_sour ces takes as input a collection of vertices and per-
forms graph traversals in parallel. The traversal proceeds in a
depth-first search style. When a remote edge is encountered, a new
task is spawned to continue the traversal on the location owning
the target. The current traversal will continue in parallel with the

efficient static containers for accessing data based on indices andspawned one. This is useful, for example, when we want to com-

CRAY4: Static pGraph Algorithms Weak Scaling CRAY4: Dynamic pGraph Algorithms Weak Scaling
SSCAZ2, 500K vertices, 11M edges/location SSCAZ2, 500K vertices, 11M edges/location

find edges —— |
find sources -

find edges —— |
find sources %

10

10

o o
() (]
% 8 graph traversal from sources ---l-- | %’; 8 graph traversal from sources --#-- |
g find sources and trim ---@--- GE) find sources and trim ---@--- o
S 4 7777777 .' e n e e e e g 4 |
5 5
g e 2 % A KN
i e i 8 s gty

0 : — : : : 0 : — : : :

4 8 64128 1024 4096 24000 4 8 64128 1024 4096 24000
Number of Processors Number of Processors
() (b)

Figure 9. Execution times for differenpGr aph algorithms on on CRAY4. Static versus dynanpi& aph comparison. The input is
generated using the SSCA2 scalable generator with 500K vertices ger cor

CRAY4: Euler Tour Weak Scaling CRAY4: Postorder Numbering Weak Scaling
tree: 500k or 1M vertices with 1 or 50 subtrees per proc tree: 500k or 1M vertices with 1 or 50 subtrees per proc
1.2 — ; . 4 . — ; .

= euler tour 500K 1 —+— T 35 postorder numbering 500K 1 —+—

9 1 euler tour 500K 50 - o 2 | postorder numbering 500K 50 -3

5 eulertour IM 1 - bt 3 postorder numbering IM 1 ---#&--

g 0.8 euler tour IM 50 ---@-- & g 25 | postorder numbering IMS50 --@--
o6 £ o

5 5

5 04 £

£ 027 L

i i

0
4 8 64128 1024 4096 16384 4 8 64128 1024 4096 16384
Number of Processors Number of Processors
(a) Tree Graph (b) Postorder Numbering

Figure 10. Execution times for Euler Tour and its post-order numbering applicatisimg @ tree made by a single binary tree with 500k or
1M subtrees per core.

pute all vertices and edges accessible from a set of starting points. The Euler Tour (ET) is an important representation of a graph

tri mis another useful computation when computing cycles or for parallel processing. Since the ET represents a depth-firsthsearc

strongly connected components. It computes the set of sources fortraversal, when it is applied to a tree it can be used to compute

a directed graph and removes all their edges, recursively continuinga number of tree functions such as rooting a tree, postorder num-

with the newly created sources. The process will stop when there bering, vertex levels, and number of descendants [15]. The paral-

are no more sources. lel ET algorithm [15] tested here usep& aph to represent the
We ran the algorithms on various input types including a torus, tree and gLi st to store the final Euler Tour. In parallel, the al-

a sparse mesh and SSCA2 random graphs. In Figure 9, weak scalgorithm executes traversals on ghér aph pVi ewand generates

ing results are shown for SSCA2 for both static and dynamic Euler Tour segments that are stored in a tempopdriyst . Then,

pG aphs. The number of cores is varied from 4 to 24000. For the segments are linked together to form the figlal st contain-

all algorithms considered, the static graph performed better due toing the Euler Tour. The tree ET applications are computed using a

the faster address resolution asidd: : vect or storage for ver- generic algorithm which first initializes each edge in the tour with
tices versust d: : hash_nap. f i nd_edges, a fully parallel al- a corresponding weight, and then performs the partial sum algo-
gorithm, exhibits good scalability with less than 5% increase in rithm. The partial sum result for each edge is copied back to the
execution time for both types of grapts. nd_sour ces incurs graph, and the final step computes the desired result.
communication proportional to the number of remote edges. The Performance is evaluated by a weak scaling experiment on
algorithms use two containers, traversing an inpG aph and CRAY4 using as input a tree distributed across all locations. The

generating an outpyiLi st . The traversal from sources and trim tree is generated by first building a specified number of binary
algorithm spawns new computation asynchronously as it reaches atrees in each location and then linking the roots of these trees in
remote edge. Additionally ther i malgorithm removep G- aph a binary tree fashion. The number of remote edges is at most six
edges, which negatively impacts performance. The increase in exe-times the number of subtrees for each location (for each subtree
cution time for the trim algorithm is 28% for static and 25% for dy- root, one to its root and two to its children in each location, with
namicpG aphs. Figure 6 illustrates that the execution time of the directed edges in both directions). Figure 10(a) and 10(b) show
pG aph algorithms increases with the number of remote edges. the execution time on CRAY4 for different sizes of the tree and

CRAY XT5: MapReduce Strong Scaling
on Simple English Wikipedia website

512 ——————————,
— 256 i
=128 ¢ 1
\'Tj 64 1
= 327 1
£ 16t 1
2 8t —
[} 4+
A 5 std hashmap —+— |
1 “tbb concurrent hashmap —><—
1 2 4 8 16 32 64 128256512

Num Procs

Figure 11. MapReduce used to count the number of occurrences
of every word in Simple English Wikipedia website (1.5GB).

varying numbers of subtrees. The running time increases with the

number of vertices per location because the number of edges in) . o X g
docusing on developing a generic infrastructure that will efficiently

the computed ET increases correspondingly. When there are mor

subtrees specified in each location, there is more communication

required to link them. Figure 10(b) shows the execution time for

computing the postorder numbering. The running time increases
with the number of vertices per location because the number of
edges increases which are proportional to the computation. When
more subtrees are specified in a location, more segments are forme

in the pLi st and more communication is needed for the partial
sum.

5.6 MapReduce

Here we examine the performance of a simple application imple-
mented on top of a MapReduce framework developedTirPL.
The MapReduce uses theHashMap, a dynamic associative

emphasizing a common design. Intel Threading Building Blocks
(TBB) provides generic data structures such as vectors, queues and
hash maps adapted for shared memory systsmseL is distin-
guished fromTBB in that it targets both shared and distributed
systems and is explicitly designed fextendibility providing the
user with the means of developing new distributed data structures.
A large number of projects provide individual parallel data struc-
tures such as Parallel Boost Graph Library [10], and Hierarchi-
cally Tiled Arrays [11] and Multiphase Specifically Shared Array
in Charm++[17]. ThesTapL pPcFdiffers from them by providing a
uniform design for all data structures provided.

There has been significant research in the area of concurrent
data structures for shared memory architectures. Most of the related
work [8, 12, 13, 18, 20, 28] is focused either on how to implement
concurrent objects using different locking primitives or how to
implement concurrent lock-free data structures. In contrast, the
STAPL pCont ai ner s are designed to be used in both shared
and distributed memory environments and address the additional
complexity required to manage the data distribution. Ideas from
these papers can be integrated in our framework at the level of
bCont ai ner s for efficient concurrent access on one location.

The sTapL pcFdiffers from other languages and libraries by

provide a shared memory abstraction fo€ont ai ners. The
framework automates, in a very configurable way, aspects relat-
ing to data distribution and thread safety. We emphasize interoper-
ability with other languages and libraries [4], and we use a com-
positional approach where existing data structures (sequential or

goncurrent, e.gTBB containers) can be used as building blocks for

implementing parallel containers.

7. Conclusion

In this paper, we presented tisgapL Parallel Container Frame-
work (PCP), an infrastructure to facilitate the development of par-
allel and concurrent data structures. The salient features of this
framework are: (a) a set of classes and rules to build p&an-

pCont ai ner [25]. The application splits the input data across t ai ner s and customize existing ones, (b) mechanisms to generate
the available cores and first applies the map and reduce functionsyrappers around any sequential or parallel data structure, enabling
locally. After the local MapReduce phase is finished, the processor its use in a distributed, concurrent environment and in cooperation
asynchronously inserts its locally reduced data infiHas hMap. with other libraries, and (c) support for the (recursive) composi-
The asynchronous insert calls the user’s reduce function if the key tion of pCont ai ner s into nested, hierarchicgiCont ai ner s
being inserted already exists in thélashMap. The communica- that can support arbitrary degrees of nested parallelism. Further-
tion and data distribution is taken care of entirely by f€on- more, we have developed a library of bapi€ont ai ner s con-

t ai ner . We ran a computation that computes the multiplicity of = structed using thecras initial building blocks and demonstrated
each word in a 1.5GB text input of the Simple-English Wikipedia the scalability of its components on very large computer systems.
website (simple.wikipedia.org). Because the input size was fixed, We have shown how we have implementeshared object viewf

we include a strong scaling study where we measure the time takenthe pCont ai ner s on distributed systems in order to relieve the
to compute the multiplicity for all input words on CRAY5. In programmer from managing and dealing with the distribution ex-
Figure 11 we show experiments corresponding to two different plicitly, unless so desired. ThecF allows users to customize its
pHashMap storages, one using tr&rL std: : hash_map and pCont ai ner s and adapt to dynamic and irregular environments,
another using thess concurrent hash map. We observe that the e.g., apCont ai ner can dynamically change its data distribution
application scales well up to 512 cores without noticeable differ- or adjust its thread safety policy to optimize the access pattern
ences for different storages. The slowdown on 256 and 512 coresof the algorithms accessing the elements. Alternatively, the user
is due to the small computation performed per core relative to the can request certain policies and implementations that can override

communication required to insert the data into pias hMap.

6. Related Work

There is a large body of work in the area of parallel data structures

with projects aiming at shared memory architectures, distributed

memory architectures or both. Parallel programming languages [5—

7, 29] typically provide built in arrays and provide minimal guid-
ance to the user on how to develop their own specific parallel
data structuressTAPL pCont ai ner s are generic data structures

and this characteristic is shared by a number of existing projects

such assTL[16], TBB [14], and POOMA [21]. The Parallel Stan-
dard Template LibraryRSTL) provides vector, list, queue and as-

sociative containers as self contained implementations and without

the provided defaults or adaptive selections. Plag is an open
ended project where users can add features as well as to the library
and thus continuously improve thrcFs performance and utility.

Our experimental results on a very large parallel machine available
at NERSC show thgdCont ai ner s provide good scalability for
both static and dynamiegCont ai ner s.

References

[1] D. Bader and K. Madduri. Design and implementation of theshp
graph analysis benchmark on symmetric multiprocessorshén12th
Int. Conf. on High Performance Computingpringer, 2005.

[2] A. Buss, A. Fidel, Harshvardhan, T. Smith, G. Tanase, Norfhs,
X. Xu, M. Bianco, N. M. Amato, and L. Rauchwerger, “The STAPL

pView,” In Int. Workshop on Languages and Compilers for Parallel
Computing Houston, TX, 2010.

[3] A. Buss, Harshvardhan, |. Papadopoulos, O. Pearce, TthSmi
G. Tanase, N. Thomas, X. Xu, M. Bianco, N. M. Amato and
L. Rauchwerger “STAPL: Standard template adaptive parallel
library,” In Proc. of the 3rd Annual Haifa Experimental Systems
Conf. (SYSTORpp. 1-10, 2010.

[4] A. Buss, T. Smith, G. Tanase, N. Thomas, M. Bianco, N. M. Amato
and L. Rauchwerger, “Design for interoperability in STAPL:
pMatrices and linear algebra algorithms,” lmt. Workshop on
Languages and Compilers for Parallel Computing, in LectNiies
in Computer Sciencevol. 5335, pp. 304-315, July 2008.

D. Callahan, B. L. Chamberlain, and H. P. Zima, “The casdasida
productivity language,” Inrhe Ninth Int. Workshop on High-Level
Parallel Programming Models and Supportive Environmewts. 26,
pp. 52-60, 2004.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kials

K. Ebcioglu, C. Praun, and V. Sarkar, “X10: An object-oriuht
approach to non-uniform cluster computing,” Pmoc. of the 20th
annual ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages, and ApplicatioNew York, NY, 2005, pp.
519-538.

D. Culler, A. Dusseau, S. C. Goldstein, A. KrishnamurtByl.umetta,
T. Eicken, and K. Yelick, “Parallel programming in Split-C Int.
Conf. on Supercomputingyovember 1993.

M. Fomitchev and E. Ruppert, “Lock-free linked lists arldpslists,”
In Proc. Symp. on Princ. of Distributed Programmijmgew York, NY,
2004, pp. 50-59.

P. Gottschling, D. S. Wise, and M. D. Adams, “Represeantsti
transparent matrix algorithms with scalable performance,Prioc.
Int. Conf. on Supercomputin&eattle, Washington, 2007, pp. 116—
125.

[10] D. Gregor and A. Lumsdaine, “The parallel BGL: A geneilirary
for distributed graph computations,” Rroc. of Workshop on Parallel
Object-Oriented Scientific Computinguly 2005.

[11] J Guo, G. Bikshandi, B. B. Fraguela and D. Padua. Writiroglpctive
stencil codes with overlapped tilinG.oncurr. Comput. : Pract. Exper.
21(1):25-39, 2009.

[12] T. L. Harris, “A pragmatic implementation of non-blockitigked-
lists,” In Proc. Int. Conf. Dist. ComputLondon, UK, 2001, pp.
300-314.

[13] M. Herlihy, “A methodology for implementing highly conaent data
objects,” ACM Trans. Prog. Lang. Sysvol. 15, no. 5, pp. 745-770,
1993.

[14] Intel. Reference Manual for Intel Threading Building Blocks, i@ts
1.0. Intel Corp., Santa Clara, CA, 2006.

[15] J. B&, An Introduction Parallel AlgorithmsReading, MA: Addison—
Wesley, 1992.

5

6

[7

8

[9

[16] E. Johnson, “Support for Parallel Generic ProgrammifjiD thesis,
Indiana University, Indianapolis, 1998.

[17] L. V. Kale and S. Krishnan, “CHARM++: A portable concant
object oriented system based on C+8&IGPLAN Not.vol. 28, no.
10, pp. 91-108, 1993.

[18] M. M. Michael, “High performance dynamic lock-free haghles and
list-based sets,” IRroc. of the Fourteenth Annual ACM Symposium on
Parallel Algorithms and Architecture§Vinnipeg, Manitoba, Canada,
2002, pp. 73-82.

[19] D. Musser, G. Derge, and A. Sail8TL Tutorial and Reference Guide,
Second Edition. Reading, MA: Addison—Wesley, 2001.

[20] W. Pugh, “Concurrent maintenance of skip lists,” UnizMaryland
at College Park, Tech. Rep., UMIACS-TR-90-80, 1990.

[21] J. W. Reynders, P. J. Hinker, J. C. Cummings, S. R. AtlaBaBerjee,
W. F. Humphrey, S. R. Karmesin, K. Keahey, M. Srikant, and M. D.
Tholburn, “POOMA: A framework for scientific simulations of
paralllel architectures,” In Gregory V. Wilson and Paul ledjtors,
Parallel Programming in C++Cambridge, MA: MIT Press, 1996, pp.
547-588.

[22] S. Saunders and L. Rauchwerger, “ARMI: An adaptiveifptan
independent communication library,” Proc. ACM SIGPLAN Symp.
Prin. Prac. Par. Prog. San Diego, California, 2003, pp. 230-241.

[23] G. Tanase, “The STAPL Parallel Container Framework”DRhesis,
Texas A&M University, College Station, 2010.

[24] G. Tanase, M. Bianco, N. M. Amato, and L. Rauchwerger, €Th
STAPL pArray,” In Proc. of the 2007 Workshop on Memory
Performance (MEDEA)Brasov, Romania, 2007, pp. 73-80.

[25] G. Tanase, C. Raman, M. Bianco, N. M. Amato, and L. Raucerer
“Associative parallel containers in STAPL,” limt. Workshop on
Languages and Compilers for Parallel Computing, in LectNaes
in Computer Sciencevol. 5234, pp. 156-171, 2008.

[26] G. Tanase, X. Xu, A. Buss, Harshvardhan, |. Papadoo@oPearce,
T. Smith, N. Thomas, M. Bianco, N. M. Amato, and L. Rauchwerger,
“The STAPL pList,” InInt. Workshop on Languages and Compilers
for Parallel Computing, in Lecture Notes in Computer Scenol.
5898, pp. 16-30, 2009.

[27] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato
and L. Rauchwerger, A framework for adaptive algorithm sé&edn
STAPL. InProc. ACM SIGPLAN Symp. Prin. Prac. Bgp. 277-288,
Chicago, IL, 2005.

[28] J. D. Valois, “Lock-free linked lists using compare-assap,” In
Proc. ACM Symp. on Princ. of Dist. Proc. (POD@ew York, NY,
1995, pp. 214-222.

[29] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A.ehik
“Titanium: A high-performance Java dialect,” In ACM, edité&«CM
1998 Workshop on Java for High-Performance Network Compulti
New York, NY, 1998.

