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ABSTRACT 
 
A formal statement of the critical station blackout problem is provided, and a solution given, up to evaluation of an 
n-dimensional “nonrecovery integral” n =number of trains (parallel backup sources of electrical power).  Several 
approaches that have been developed in the industry to estimate probability of critical station blackout are shown to 
be interpretable as special cases of such integrals.  Computational results, for a simple model problem, suggest there 
is yet a very substantial overconservatism in current state-of-the-art techniques for estimating probability of critical 
station blackout.  Research issues associated to possibly meeting this need via computational evaluation of the 
nonrecovery integral are discussed. 
 
Key Words: Core damage frequency, nonrecovery integral, reactor safety, station blackout, uncertainty 
quantification. 
 
 

1. INTRODUCTION 
 
Fully 25% of core damage frequency, as analyzed in the South Texas Project Nuclear Operating 
Company (STPNOC) Probabilistic Risk Assessment (PRA), is from Loss of Offsite Power 
(LOOP).  Existing models of LOOP recovery are understandably very conservative.  Improved 
models of LOOP recovery conceivably could have direct benefit for the accuracy of a major 
contributor to the STPNOC PRA. The work described here constituted a preliminary effort to 
quantify the uncertainty stemming from this conservatism, and therefore determine the extent of 
the benefit that might be available from such improved models. 
 
This situation is by no means unique to the two STPNOC light-water reactors.  To the contrary, a 
relatively recent US Nuclear Regulatory Commission report states that: 
 
“… risk analyses performed for NPPs (nuclear power plants) indicate that the loss of all ac 
power can be a significant contributor to the risk associated with plant operation, contributing 
more than 70 percent of the overall risk at some plants.  Therefore a loss of offsite power 
(LOOP) and its subsequent restoration are important inputs to plant risk models, and these inputs 
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must reflect current industry performance in order for plant risk models to accurately estimate 
the risk associated with LOOP-initiated scenarios.” [1] 
 
The structure of this paper is as follows:  In the following Section 2 (Problem Statement and 
Formal Solution) a precise formulation of what is termed here as the “critical station blackout 
problem” is given, and a formal solution of that problem is provided, in the form of an n-
dimensional “nonrecovery integral,” where n is the number of parallel backup sources of 
electrical power (“trains”).  In Section 3 (Special Cases) various special cases of the critical 
station blackout problem are introduced, and the evaluations of the nonrecovery integral for 
those cases are shown to correspond to various (conservative) approximate solutions to the 
critical station blackout problem that have been employed in practice.  Section 4 (A 
Computational Comparison) is devoted to a comparison of these various approximations to the 
exact solution, for a simple example.  The results illustrate that there may yet be significant gain 
to be realized from relaxing the degree of conservatism imposed by the various approximations 
currently used in practice.  Unfortunately the methodology (Markov models) employed to 
demonstrate this potential gain is applicable only to the case that failures and repairs of onsite 
emergency backup power trains are exponentially distributed at constant rates.  The final Section 
5 (Conclusions) primarily contains a discussion of possible approaches to extending this best 
estimate to more general classes of failure and repair distributions.  
 
 

2. PROBLEM STATEMENT AND FORMAL SOLUTION  
 
Subsection 2.1 contains a precise formulation of what is termed here as the “critical station 
blackout problem.”  A formal solution of that problem is developed in Subsection 2.2. 

2.1.  Formulation of the Critical Station Blackout Problem  
 
A plant power system is considered to consist of offsite power plus n emergency power trains, 
indexed by 1, 2, … n.  LOOP is assumed to occur at some initial time t=0.  Following that event 
various subsequent events occur at random times having presumed known statistical 
distributions, as follows: 
 
• Offsite power is recovered at time t0, distributed as the cumulative distribution function (cdf) 

{ }0  Recoveries of offsite power prior to or at t=0 are respectively 
irrelevant to or incompatible with LOOP at t=0, so that this cdf is assumed to be identically 
zero on the closed left half-line t≤0.   

,  ( ) Prob .G G t t t= ≤

• Emergency power train i fails at random time ,iτ which is assumed to be distributed as the 
cdf Fi.  These cdfs are identically zero on the open left half-line 0τ < (failures prior to loss of 
offsite power are irrelevant), and are assumed to be absolutely continuous on the open right 
half-line 0;τ > however, in order to incorporate the important phenomenon of failure on 
demand it is necessary to allow for the possibility that Fi(0)>0, and hence Fi has a (left) jump 
discontinuity at 0τ = . (The assumption here is that at time 0 all emergency power trains 
attempt to go into an operating state, so that all failures to start occur at that time.  Other 
workers have considered a finer classification of failures to start (e.g., [2]).  Inclusion of such 
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considerations could be an important element of future development.)  The corresponding 
probability density function (pdf) fi  is then an integrable function such that 

 

[ ] [ ] { }
0

( ) (0) ( ) ( ) (0) ( ) ( ) Prob ,i i i i i iF F f d F f d
τ τ

τ δ τ τ τ δ τ τ τ τ τ
−∞ −

′ ′ ′ ′ ′ ′= + = + =∫ ∫ ≤  

 
 where Fi(0) is the probability that emergency power train i fails on demand, and the “delta 

function” δ  formally satisfies 
 

0

0,  if 0,
( ) ( )

1,  if 0.
d d

τ τ τ
δ τ τ δ τ τ

τ−∞ −

<⎧′ ′ ′ ′= = ⎨ ≥⎩
∫ ∫  

  
 (In the present initial problem formulation common-cause failures between the different 

emergency power trains are neglected.) 
• Given that emergency power train i fails at time 0,iτ ≥ it recovers at some subsequent 

random time it τ> that is distributed according to the cdf n1 2( ; , ,..., ),it R t τ τ τ→ where iR is a 
cdf that is zero on the closed left half-line it τ≤  (i.e., no “instantaneous” repairs, because a 
recovery coincident with failure is no failure at all).   This very general form of the recovery 
function for emergency power trains seems necessary in order to accommodate the full range 
of repair policies that might be adopted by plant management.  Some more specific concrete 
instances of this very general form of a recovery cdf for an emergency power train appear in 
the following discussion. 

 
Given these various distribution functions, the associated problem is to compute the 
corresponding cdf for the random time of occurrence of a critical station blackout (CSBO), 
which is to say a station blackout that lasts as long as some specified “critical time”  The 
solution to that problem is developed in the following subsection. 

CSBOT
.cT

 
2.2.  Formal Solution of the Critical Station Blackout Problem  
 
A station blackout occurs at and recovery occurs only after time greater than the critical 
time if, and only if: i) all emergency power trains fail on demand, and ii) neither offsite power 
nor any of the emergency power trains subsequently recover within elapsed time  The 

probability of the former  occurring is   That of the latter occurring is 

  Therefore the pdf for station blackout at a random time 

contains a failure-on-LOOP contribution of the form 

0,t =

..., 0) .c

,cT

(G T

.cT

1

(0).
n
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or station blackout to occur between times T and T + dT, for some T > 0, and subsequently 
on 

 Offsite power must have not been recovered by time

F
extend for a time interval cT , a number of events describable in terms of the known distributi
functions must occur.  These events, and their respective probabilities, can be enumerated as 
follows: 
 
•  .cT T+ (The associated probability is 

• Som ith, must fail between T and T + dT.  (Associated 

 trains other than the ith must have failed prior to time T.  (The 

1 ( ).cG T T− + ) 
e emergency power train, say the 

probability fi(T)dT.) 
• All emergency power

probability of the jth such train, ,j i≠ failing at 0t = is Fj(0).  The probability of the s
train failing within 

ame 

jdτ ′ at jτ ′ is ' '( ) .j j jf dτ τ ) 
• The ith emergency power train ust not havem  recovered by subsequent elapsed time   .cT

(The corresponding probability is 1 1 11 ( ; ,.., , , ,..., ),i c i i nR T T Tτ τ τ τ− +′ ′ ′ ′− + in the notation of the
preceding item.) 

• None of the previ

 

ously failed emergency power trains must have recovered by time .cT T+   
(If the jth such train fails at time ,jτ ′ then the probability it has not recovered by time cT T+  
is 1 1 11 ( ; ,.., , , ,..., ).j c i i nR T T Tτ τ τ τ− +′ ′ ′ ′− + ) 

 
If one sums, multiplies or integrates over all of these possibilities, as appropriate, then the pdf for 

 

]×

n

station blackout is revealed as  
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he associated cdf for onset of critical station blackout is then zero for negative values of T and T

is given by 
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where { }

1
: max .ii n

τ τ
≤ ≤

′=  

 
Lloyd and Anoba [3] have given special cases of this general solution.   Vaurio and Tammi [4] 
have given a recursive solution for the case in which the various trains start sequentially, each as 
its predecessor fails, rather than all starting at time of LOOP.

  
Eq. (1) is, except for the important consideration of common-cause failures, a formal solution of 
the station blackout problem.  (The value at a “mission time” of 24 hoursT =  and for a critical 
time  depending on the particular system but typically on the order of an hour, often is used as 
a basis for input to fault-tree calculations.)  Any practical application of this formal solution will 
require computational methods to evaluate the n-fold “nonrecovery integral” in (the last line of) 
Eq. 

,cT

(1).  This could be a formidable task, as evaluation of multiple integrals is computationally 
costly.  Partially for this reason the standard that has evolved in the nuclear industry is based on 
evaluation of various overestimates (i.e., conservative bounds).  Some of these will be illustrated 
in the discussion of various special cases derived from (1) that appear in the following 
subsection. 

 
3. SPECIAL CASES 

 
The presumed importance of loss of offsite power goes back to the very early days of 
probabilistic safety analysis.  For example, Keller and Modarres [5, p. 276] say, in regard to the 
well-known early 1970’s study WASH-1400), the following:  “Preliminary results indicated that 
the most important transients involved the loss of offsite power and the loss of plant heat removal 
systems.” (Emphasis added.)   
 
As a consequence there has been much prior work on various aspects of this issue, much of it 
supported by the NRC itself.  (See, for example, [1] and additionally Vol. 2 of that same report 
[6].)    The work reported here is directed toward exploring the potential benefits from 
development of a methodology that moves toward replacing some of the prior conservatism by 
best-estimate calculations, especially in regard to recovery of emergency power trains from 
potential failures during a LOOP event; however it is evolutionary, in that it intends to build 
upon but extend well-developed and widely understood methodologies currently employed in the 
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industry.  The connections of these various methodologies to the formal solution provided by the 
nonrecovery integral (1) are explored in the various subsections of this section. 
 
3.1.  Single Train, No Recovery 
 
This is the case n=1,   In this case the general solution 1 0.R G= ≡ (1) evaluates as 
 

CSBO SBO 1 1 1
0 0

( )= ( ) (0) ( )  = ( ),
T T

F T f T dT F f T dT F T
−

′ ′ ′ ′= +∫ ∫  

 
or 
 

{ } { }CSBO 1Prob Prob .T T Tτ≤ ≡ ≤  
 

This is exactly what one would expect intuitively in this simplest of all possible cases.  This 
result is useful primarily as a check on the validity of the general form (1) of the solution to the 
critical station blackout problem. 
 
3.2. Multiple Trains, No Recovery 
 
In the case of general n > 1, but the general solution 0, 1,..., ,iG R i n= ≡ = (1) evaluates as 
 

  (2) 

{ }{ } { }
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This case is of interest as an upper bound for the general result (1); in other words a conservative 
estimate of the probability that critical station blackout occurs by time   It is generally deemed 
excessively conservative, because the impact of recovery of neither offsite power nor any of the 
emergency power trains is considered.  Any account taken of these recoveries of course must 
reduce the corresponding estimate of the probability of critical station blackout within any fixed 
mission time  

.T

.T
 
3.3. The Fault-tree Approach  
 
The description here of the “fault-tree approach” closely follows that of Lloyd and Anoba [3].  In 
this approach the (offsite and emergency power train) “nonrecovery factors” in the general 
solution (1) are assigned constant values, 
 

 1 1 11 ( ' ) constant,  1 ( ; ,.., , , ,..., )  constant.ic j c i i nG T T G R T T T Rτ τ τ τ− +′ ′ ′ ′ ′ ′− + ≡ = − + = =  (3) 
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}

The solution (1) then becomes  
 

  (4) {CSBO CSBO
1

( ) ( ) Prob .
n

ii
i

F T G F T R T T
=

⎧ ⎫⎡ ⎤= × = ≤⎨ ⎬⎣ ⎦⎩ ⎭
∏

 
The assignment of point values to nonrecovery events is consistent with the point-estimate of 
probabilities that underlies fault-tree analysis.  It is inconsistent with the true dynamic nature of 
the recovery process; indeed  and jG R as defined by  (3) cannot even be cdfs, except in the 
(obviously overconservative) prior cases that they are identically equal to 1; i.e., recovery is 
neglected altogether. 
 
In regard to the offsite nonrecovery, Lloyd and Anoba [3] say the following: 
“.. it must be supplied by the analyst.  If the term has a mission-time dependence, establishing a 
probability value for the term may be difficult.  As a result, this value may be significantly 
overconservative.” 
 
It appears that much the same concern holds for the nonrecovery factors for the individual 
emergency power trains, especially in view of the additional complication that in the general 
solution (1) these appear with arguments offset by the associated (variable) time of failure.  
These considerations are the two major obstacles to realistic best estimates of CSBO that take 
adequate account of the dynamic nature of recovery processes.  Most efforts to account for these 
dynamic effects customarily are formulated as computation of a “recovery factor” to be applied 
to (4), or some similar relatively easily computed conservative estimate of the probability of 
CSBO within some accepted mission time.  The former (dynamics of nonrecovery of offsite 
power) is somewhat easier, because the corresponding nonrecovery complementary cdf in (1) 
depends on time variables other than elapsed time since LOOP only in the relatively simple form 
of an offset by the constant critical time.  By contrast the nonrecovery (complementary) cdfs for 
the emergency power trains depend upon that plus the variable times of failure of the different 
emergency power trains, in a manner that depends upon the repair policy (and resources) at the 
particular plant of interest.  The following two subsections are devoted to brief descriptions of 
the current state-of-the-art in the nuclear industry for dealing with these two respective issues. 
    
3.4. Dynamic Offsite Recovery 
 
Lloyd [6] demonstrated how to incorporate the dynamic variation in offsite recovery into the 
solution.  If constancy of the nonrecovery factors (i.e. (3)) now is assumed only for nonrecovery 
of the emergency power trains, then the general solution (1) becomes 
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Approaches based on numerical integration of the (convolution) integral appearing in this form 
of the solution are described in Lloyd and Anoba [3], Lloyd [6], and Read and Fleming [7]. 
 
3.5.   Repair Only After SBO 
 
This is essentially the prior case, except that now the nonrecovery cdfs for the emergency power 
trains satisfy 
 

  { }1 1 1 1
( ; ,.., , , ,..., ) ' max ,

n

jj j j j n k
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where each jR is a cdf that is identically zero on the closed left half line (i.e., for arguments that 
are not positive). 
 
The underlying model of repair is that no attempts are made to repair any emergency power train 
until SBO occurs.  At that time repairs begin on each of the emergency power trains, in a manner 
consistent with the respective recovery cdfs .jR  
 
The corresponding cdf for CSBO is 
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This form of the solution is that employed by Read and Fleming [7].  It clearly is somewhat 
conservative, in that it assumes no repair work begins on any emergency power train until all 
trains have failed.  To some extent this conservatism is reduced by the parallel “infinite 
workforce” assumption that once repair does begin it can proceed on all trains simultaneously, 
with no loss of effectiveness.  In Lloyd and Anoba [3] this innate conservatism also is somewhat 
overcome by the use of a recovery time distribution that “applies to situations involving a high 
urgency for diesel generator repairs.” 
 
In any event the expression (5) for the distribution of CSBO events, as implemented in the 
STADIC code, is state-of-the-art in the nuclear industry.  The question of interest here is whether 
there might be significant gain (i.e., reduction in estimate of core damage frequency) from even 
further improvements in estimating the nonrecovery integral.  In the following section an 
example is given that suggests the potential for considerable gain. 

 
4. A COMPUTATIONAL COMPARISON 

 
The simple model system underlying the preliminary exploration of possible reduction in 
estimated probability of CSBO consisted of a plant with two identical emergency diesel 
generators, A and B.  Such a model plant can, at any time, lie in any of five states: State 0, offsite 
power is available; State 1, only Diesel A is available;  State 2, only Diesel B is available; State 
3, both Diesels A and B are available, but offsite power is not; and State 4, no power is available 
(SBO).  In the “exact” model transitions are assumed to occur between the various states as 
shown in Figure 1, with the following parametric values for the indicated transition rates: diesel 
failure rate = probability that a diesel failure stems from a common cause 
that would affect both diesels (if operating) = 

18.35e-4 hour ;Dλ
−=

2 .0115;ρ = 1 1 2;ρ ρ= − diesel repair rate = 
and recovery rate for offsite power = 1 hour ;−1/12Dμ =

 
  1

0 ( ) ( ;.3,1.064) / (1- ( ;.3,1.064)) hour ;T Tt f t F Tμ −=

 
where  are respectively the lognormal pdf and cdf.  (Cf. Table 4.1, pp. 27-28 of [1].)  and FTf T

 
The initial values shown in Figure 1 for the various states were obtained by assuming LOOP at 

a probability of failure on demand for the diesels of .0132, and a probability of 0,t = 2 .0115ρ =  
that the failure on demand results from a common cause (of failure of both diesels), given that it 
does occur.  The corresponding results, for the Markov model taken here as exact, are shown as 
the solid black curve (labeled “full recovery”) in Figure 2. 
 
For comparative purposes the probability of SBO (state 4), as a function of time, was computed 
for the following analogs of various approximations that were discussed in the preceding section: 
 

1. No recovery, for which the recovery rates were changed to 0 0,Dμ μ= ≡ and all else 
remained as in the assumed exact model. 

2. Offsite recovery only, for which the diesel repair rate was changed to zero, but the offsite 
recovery rate and all else were as in the assumed exact model. 
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 Figure 1.  Block diagram of the Markov model  
 
 

3. The Read-Fleming [7] model of diesel recovery, in which all was as in the assumed exact 
model, except that the transition rates from States 1 and 2 to State 3 were changed to zero 

 
The results from the four approaches can conveniently be compared in terms of their respective 
estimates of probability of SBO at the end of the 24 hour mission time.  The estimate without 
recovery is approximately 15e-3; consideration of offsite recovery (only) substantially reduces 
that, to about 3.5e-3;  the Read-Fleming model (of onsite recovery only after SBO) 
approximately halves that, to approximately 1.5e-3; finally, full recovery halves that again, to 
about 0.8e-3.  This certainly suggests the possibility that current methodologies could 
substantially overestimate the probability of core damage frequency from LOOP events, and 
therefore result in mitigating work that is less than optimally effective in guarding against the 
remote possibility of core damage. 
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Figure 2.  Probability of station blackout, as computed from the various models  

 
5. CONCLUSIONS  

 
Preliminary results reported here suggest that the current state-of-the-art in the nuclear industry 
for estimating probability of critical station blackout leaves substantial room for improvement 
(possible reduction by as much as two thirds) in estimating the contribution of station blackout to 
estimate of core damage frequency.  We suggest this alone warrants a substantial effort toward 
effecting such improvements. 
 
A different benefit from improved estimates of critical station blackout might ultimately prove 
even more beneficial to the nuclear industry as a whole.  As the nuclear renaissance has 
progressed, some have suggested that it calls for a quantum improvement in the already 
extremely low estimates of core damage frequency.  One approach to that, and perhaps the only 
available approach for existing NPPs, is to add additional backup systems to guard against the 
leading potential initiators of events that could lead to core damage.  Retrofitted backup systems 
can be very expensive, and are likely to be undertaken only if there is substantial assurance they 
will lead to significant reductions in risk and corresponding enhancements to overall system 
reliability.  Improved methods for estimating risk and reliability can help to provide that 
assurance. 
 
Given the need for improvements in estimates of the probability of CSBO, how might this 
improvement be provided?  One possibility is the very direct approach of numerical evaluation 
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of nonrecovery integrals such as (1).  This appears to be a significant research challenge, but 
computational evaluation of multidimensional integrals has been successfully employed in other 
areas of safety analysis (e.g., [8] is a work that is widely cited in the field of structural safety). 
 
Yet another question that must be addressed before computational evaluation of nonrecovery 
integrals can become a practical tool for application in the nuclear industry is the extension to 
account for possible common-cause failures.  This also appears likely to require a substantial 
research effort.    
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