A Systems Framework for Modeling the Detection of Smuggled Nuclear Materials

Texas A&M University

Faculty: Dr. Gary M. Gaukler (Systems Engineering Team Lead), Dr. Yu Ding Postdoctoral Researcher: Dr. Chenhua Li, Dr. Sunil S. Chirayath

Students: Eric Brown, Brent Eldridge, Derek Rodriguez

Objectives

- Model a set of layered container inspection policies \bullet
- Investigate the benefits of having a radiography node lacksquare
- Provide a general framework for nuclear materials \bullet
- Discuss how information from upstream inspection sites can be ulletused to improve detection at downstream sites

Improved Inspection Policies

Impact of Adversary Behavior

Radiography Node

- Introduce a radiography node, which provides an X-ray imaging of what is inside the container, called a container type.
- Based on a given container type, calculate a hardness measure and determine which pathway the scenario will go through.

Medium energy X-ray

Novel Inspection System Using Prior Information

- Incorporate prior information into the current inspection system
- Propose a boundary curve policy to replace the count threshold policy **Foreign Port Domestic Port**

machine: Z Portal

Hardness Measure

- Hardness: a measure of how hard it is for a given passive detector to detect HEU inside that particular container; the area of overlap between the two pdfs
- MCNP code mimics the working of a given type of passive detector
- takes the z-value matrix associated with a given container type as its input
- outputs the average photon counts per unit time \succ for a given container type.

Analysis of the Inspection Policies

- In an HEU container, one kg HEU (30%) of U-238 and 70% of U-235) with one cm lead shielding is placed in the center of highest z-value area of the container.
- Efficient frontiers: the trade-off between

delay time (DT).

25 30 20 ness measure (h_s): probability that quantifies the hardness of detecting HEU for passive detectors

- Let r be the natural logarithm of the density ratio of HEU containers and non-HEU containers
- Boundary curve = {all (x1, x2) such that the ratio r is a constant, $r = t_r$
 - If above the boundary curve, $r \ge t_r$, classified as suspicious container, and sent for further investigation
 - If below the boundary curve, $r < t_r$, labeled as safe container.

System Comparison

- Compare three inspection system:
 - The hybrid system using the current information only;
 - The hybrid system incorporating the prior information and the proposed boundary curve;
 - The hybrid system incorporating the prior information and the rectangle boundary curve.

Conclusion & Discussion

- The HCS and HYB significantly outperform the ATS-based policy.
- Using prior information can significantly increases the detection

Problem of infiltration along the route needs to be addressed.

