

Problem

Goal

Prevent smuggling of highly enriched nuclear material through border

Idea

- Can we use passive detector gates to classify containers into suspicious/non-suspicious?
- Only search suspicious freight manually

Issues

- Manual searches expensive and time-consuming
- Severe time constraints for detection
- Low emission from source, typically within a much larger background

Setting

- Detect γ-photons, neutrons exiting cargo
- Sources are expected to be weak and shielded
- Background radiation my be orders of magnitude stronger than source (SNR ~0.1%)
- Direction insensitive measurements are not sufficient for detection as they cannot distinguish between source and background particles.

Assumptions

- Source is geometrically small compared to detection region
- Background radiation is random
- Source and background particles are indistinguishable
- Some directional information about incoming particles is available

SPECT (Single photon emission computer tomography) imaging

- Let f be unknown source distribution, μ attenuation
- Measurements are integrals over lines L:

$$T_{\mu} f(L) = \int_{L} f(x) e^{-\int_{L_{x}} \mu(y) dy} dx$$

- T is attenuated Radon transform
- Lines are parametrized by normal ω and signed distance *s* to origin

Problem

- Collimation is required, which would eliminate the weak signal
- Radon transform model does not apply when source is weak
- Reconstruction schemes cannot handle strong noise in signal

SHIELD: Smuggled HEU Interdiction through Enhanced analysis and Detectors

Detecting Small Low Emission Radiating Sources

M. Allmaras, W. Charlton, D. Darrow, Y. Hristova, G. Kanschat, P. Kuchment, J. Ragusa, G. Spence Mathematics and Nuclear Engineering Departments, Texas A&M University

Maximum deviation due to source 5545,83 = mean+8.75 standard deviations 4,900 5,000 m 5,100 5,200 5,300 m-5std

2D results (using a detector array gate)

- 2D backprojection from x-ray measurements
- 10⁶ background particles, ~1000 source particles,

After subtraction of local means

5,400

m+9std

- along 3 detector arrays
- SNR ~0.1%

3D results

- 3D backprojection from x-ray measurements along eight sides of a cube
- 10⁶ background particles, SNRs ~0.05% (left), ~0.02% (right)
- Pictures show backprojection along a cut plane through center of domain

Backprojection

Small sources are geometrically singular, can this be used in detection?

Backprojection

• Assume we know the number of particles $g(\omega, s)$ that were detected at position s coming from direction ω . Then

 $T^{\#}g(x) = \int_{|\omega|=1} g(\omega, x \cdot \omega) d\omega$

- At point x, $T^{\#}$ integrates over all lines passing through x
- Reveals areas of unusually high concentration of lines
- Allows estimation of confidence of detection

 After thresholding Detection confidence ~99.99%

