Google+ Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory | Educating the Next Generation of Leaders in Nuclear Security Sciences
Skip navigation


R. Pearce, M. Gokhale, and N.M. Amato, "Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory," ACM/IEEE Supercomputing Conference 2010 (SC10), November 2010.


Processing large graphs is becoming increasingly important for many domains such as social networks, bioinformatics, etc. Unfortunately, many algorithms and implementations do not scale with increasing graph sizes. As a result, researchers have attempted to meet the growing data demands using parallel and external memory techniques. We present a novel asynchronous approach to compute Breadth-First-Search (BFS), Single-Source-Shortest-Paths, and Connected Components for large graphs in shared memory. Our highly parallel asynchronous approach hides data latency due to both poor locality and delays in the underlying graph data storage. We present an experimental study applying our technique to both In-Memory and Semi-External Memory graphs utilizing multi-core processors and solid-state memory devices. Our experiments using synthetic and real-world datasets show that our asynchronous approach is able to overcome data latencies and provide significant speedup over alternative approaches. For example, on billion vertex graphs our asynchronous BFS scales up to 14x on 16-cores. © 2010 IEEE.

See Document

Associated Project(s):

  • SHIELD (Smuggled HEU Interdiction through Enhanced anaLysis and Detection): A Framework for Developing Novel Detection Systems Focused on Interdicting Shielded HEU

  • View Sitemap