Detecting Small Low Emission Radiating Sources

M. Allmaras, W. Charlton, D. Darrow, Y. Hristova, G. Kanschat, P. Kuchment, J. Ragusa, G. Spence
Mathematics and Nuclear Engineering Departments, Texas A&M University

Issues
- Manual searches expensive and time-consuming
- Low emission from source, typically within a much larger background

Idea
- Prevent smuggling of highly enriched nuclear material through border
- Can we use passive detector gates to classify containers into suspicious/non-suspicious?
- Only search suspicious freight manually

Goal
- SPECT (Single photon emission computer tomography) imaging
 - Low emission from source, typically within a much larger background
 - Severe time constraints for detection
 - Manual searches expensive and time-consuming

Problem
- Small sources are geometrically singular, can this be used in detection?
 - Direction insensitive measurements are not sufficient for detection as they cannot distinguish between source and background particles.

Assumptions
- Source is geometrically small compared to detection region
- Background radiation is random
- Source and background particles are indistinguishable
- Some directional information about incoming particles is available

Backprojection
- Assume we know the number of particles \(g(\omega, s) \) that were detected at position \(s \) coming from direction \(\omega \). Then
 \[
 T^\# g(x) = \oint_{|\omega| = 1} g(\omega, x \cdot \omega) \, d\omega
 \]
- At point \(x \), \(\tau \) integrates over all lines passing through \(x \)
- Reveals areas of unusually high concentration of lines
- Allows estimation of confidence of detection

Setting
- Detect \(\gamma \)-photons, neutrons exiting cargo
- Sources are expected to be weak and shielded
- Background radiation may be orders of magnitude stronger than source (SNR \(\approx \)0.1%)

References
- Detecting small low emission radiating sources, M. Allmaras, D. Darrow, Y. Hristova, G. Kanschat, P. Kuchment (preprint, arXiv:1012.3373v1)

Compton measurements
- In practice, detectors cannot determine the direction a particle came from without discarding most of the signal through collimation.
- Direction data is therefore not obtainable for low-emission sources with short count times.
- However, Compton camera detectors can determine a cone of possible directions for each detected particle without collimation.

2D results (using a detector array gate)
- 2D backprojection from Compton measurements along three sides
- \(> 91.97\% \)
- After subtraction of local means
- After thresholding detection confidence \(> 91.97\% \)

3D results
- 3D backprojection from Compton measurements along eight sides of a cube
- \(> 99.99\% \)
- After subtraction of local means
- After thresholding detection confidence \(> 99.99\% \)

3D backprojection from x-ray measurements along eight sides of a cube
- \(> 91.97\% \)
- After subtraction of local means
- After thresholding detection confidence \(> 91.97\% \)

Backprojection
- \(T^\# \) integrates over all lines passing through \(x \)
- \(g(\omega, x \cdot \omega) \) is attenuated Radon transform
- Lines are parametrized by normal \(\omega \) and signed distance \(s \) to origin

SPECT (Single photon emission computer tomography) imaging
- Let \(f \) be unknown source distribution, \(\mu \) attenuation
- Measurements are integrals over lines \(L \):
 \[
 T^\# f(L) = \int_L f(x) e^{-\int_x^\omega \mu(y) \, dy} \, dx
 \]
- \(T^\# \) is attenuated Radon transform
- Lines are parametrized by normal \(\omega \) and signed distance \(s \) to origin

Problem
- Collimation is required, which would eliminate the weak signal
- Reconstruction schemes cannot handle strong noise in signal

2D backprojection from x-ray measurements along three detector arrays
- \(> 91.97\% \)
- 2D backprojection from x-ray measurements along 3 detector arrays
- \(> 91.97\% \)
- 10^6 background particles, SNR \(\approx \)0.1%