Modeling the Detection of Smuggled Nuclear Materials at Land Border Crossings

Texas A&M University

Faculty: Dr. Gary M. Gaukler (Systems Engineering Team Lead), Dr. Yu Ding
Postdoctoral Researchers: Dr. Chenhua Li
Students: Eric Brown, Brent Eldridge, Derek Rodriguez

Objectives

- Model land ports of entry designed to detect smuggled HEU
- Evaluate impact of inspection procedures on detection probabilities, false alarm rates, and waiting times
- Discuss the impact of waiting space sizes, lane-switching policies, and congestion control measures
- Investigate the vulnerability of inspection policies to denial-of-service attacks by adversaries

Insurance Procedures

- Every vehicle undergoes inspection via RPM and ATS system
- If there is an alarm, vehicle enters secondary inspection to undergo either “miscellaneous” or VACIS inspection
- Vehicles may enter manual inspection if the source of the alarm is not identified by the first phase of secondary inspection

Vehicle Classifications

- 0 – empty
- 1 – low-Z cargo
- 2 – medium-Z cargo
- 3 – high-Z cargo
- 4 – NORM

Infrastructure Impact

- Limited physical space at a port constrains the number of vehicles that can wait for inspection (buffer space) at each inspection area
- The current design of the Blaine border crossing consists of 3 buffer spaces in VACIS inspection, 4 spaces in manual inspection, and 5 spaces in “miscellaneous” inspection
- Adding additional buffer space to the “miscellaneous” inspection queue shows a considerable effect on the average sojourn time through the port

Managing Temporary Congestion

- Management must balance HEU detection with sojourn time, or overall vehicle time at the port
- When sojourn time is perceived to be too long, e.g., greater than a threshold T, management may:
 - keep current procedures
 - let all vehicles pass by secondary inspection
 - inspect only vehicles that fail both RPM and ATS inspections
 - Inspect only certain types of cargo

Gaming Congestion Control Measures

- A Denial-of-Service attack occurs when an adversary first forces batched arrivals to provoke temporary changes in inspection procedures, then submits an HEU-carrying vehicle
- In this analysis, we study the impact of batches of normal vehicles and suspicious vehicles, or vehicles that may need secondary inspection

- If a congestion control measure is implemented, detection probability is at least 20% lower than under regular inspection procedures

For more information, contact Dr. Gary M. Gaukler; Phone: 650-823-5509; Email: gaukler@tamu.edu